

Design Example Report

Title	29 W High Power Factor Isolated Flyback Using LYTSwitch [™] -6 LYT6067C with 3-in-1, DALI Dimming and CCT Toggle	
Specification	180 VAC – 265 VAC Input; 36 V, 800 mA Output	
Application	LED Lighting	
Author	Applications Engineering Department	
Document Number	DER-754	
Date	November 1, 2018	
Revision	1.0	

Summary and Features

- Accurate constant current regulation
- Industry first AC/DC controller with isolated, safety rated feedback without optocoupler
- High power factor, >0.9 at 180 VAC to 265 VAC
- Ultrafast transient response
- Highly energy efficient, >86%
- Integrated protection and reliability features
- Output short-circuit protection
 - Line and output OVP
- Thermal foldback and over-temperature shutdown with hysteretic automatic power recovery
- CCM + Quasi-Resonant switching for precision CC/CV operation without need for loop compensation
- Meets IEC 2.5 kV ring wave, 1 kV differential surge
- Meets EN55015 conducted EMI

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuit's external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at https://www.power.com/company/intellectual-property-licensing/.

Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.power.com

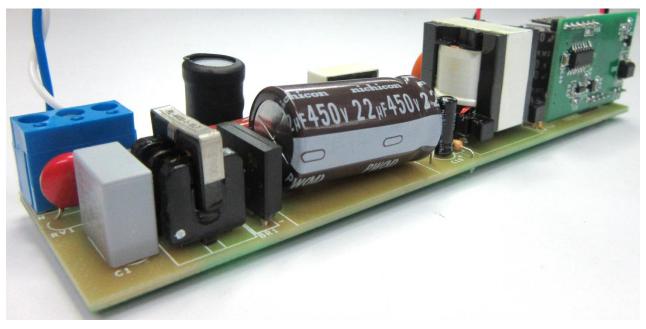
Table of Contents

1	Intro	oduction	5					
2	Power Supply Specification7							
3	Schematic							
4	Circ	Circuit Description						
	4.1	Input Circuit Description						
	4.2	Primary Circuit						
	4.3	LYTSwitch-6 Secondary-Side Control						
	4.4	PFC Circuit Operation						
	4.5	3-in-1 Dimming Circuit						
	4.5.	-						
5	_							
6		of Materials						
Ŭ	6.1	Electrical	-					
	6.2	Mechanicals and Miscellaneous						
	6.3	Female Shorting Jumper for Connectors J4 and J5						
7		ack Transformer (T1) Specification						
'	7.1	Electrical Diagram						
	7.2	Electrical Specifications						
	7.3	Material List						
	7.4	Transformer Build Diagram						
	7.5	Transformer Construction						
	7.6	Transformer Winding Illustrations						
Q	-	Inductor (T2) Specifications						
0	8.1	Electrical Diagram						
	8.2	Electrical Specifications						
	8.3	Material List						
	8.4	Inductor Build Diagram						
	8.5	Inductor Build Diagram						
	8.5 8.6		-					
9		Inductor Winding Illustrations						
9 1(erformance Data						
т	10.1							
	10.1	Output Current Regulation						
		System Efficiency Power Factor						
	10.3							
	10.4	%ATHD						
	10.5	Individual Harmonics Content at Full Load						
	10.6	No-Load Input Power						
	10.7	CV/CC Curve						
	10.8	Dimming Performance: 3-in-1 Dimming						
	10.8	11 / 5						
	10.8	· · · · · · · · · · · · · · · · · · ·						
	10.8							
1	1 Te	est Data	50					

11.1	Tes	t Data at Full Load	.50
11.2		t Data at No-Load	
11.3	Indi	ividual Harmonic Content at 230 VAC 50 Hz and Full Load	.51
12 T		nal Performance	
12.1	The	rmal Measurements at Ambient Room Temperature	.52
12.2	The	rmal Performance at Ambient Room Temperature with Unit Inside Casing	.57
12.3	The	rmal Performance at High Ambient Temperature	. 59
13 V		forms	
13.1		ut Voltage and Input Current at Full Load	
13.2		t-up Profile at Full Load (DALI Disabled)	
13.3		t-up Profile Full Load (DALI Enable)	
13.4		n-Off Profile Full Load	
13.5		Switch-6 Drain Voltage and Current Waveforms at Normal Operation	
13.6		Switch-6 Drain Voltage and Current at Full Load Start-up	
13.7		Switch-6 Drain Voltage and Current during Output Short-Circuit	
13.8		Diode Voltage and Current at Normal Operation	
13.9		Diode Voltage and Current at Start-up Full Load	
13.10	-	output Current Ripple	
-	10.1		
		Ripple Ratio and Flicker % Measurement	
		Icted EMI	
		t Set-up	
	1.1		
		Test Result	
	2.1	Non Earthed Conducted EMI	
		Earthed Conducted EMI	
		ndix	
		I and CCT Interface Circuit	
		uit Description	
_	2.1	Input Voltage Regulator	
	2.2		
15.		CCT Circuit	
15.		Connector Pinouts	
15.		J5 Pinout	
15.2	-	J6 Pinout	
		ematic	
15.4		Layout	
15.5		rd Level Test for DALI	
15.	-	Lab Equipment to be Used	
15.		Wiring Diagram for the Test Set-up	
15.		Procedures	
		rd Level Test for CCT	
		Lab Equipment to be Used	
15.0	6.2	Wiring Diagram for the Test Set-up	.85

15.6.3 Procedures	86
15.7 DALI Dimming and CCT Set-up	
15.8 Bill of Materials	89
15.8.1 Electricals	89
15.8.2 Mechanicals	89
15.9 Dimming Performance with DALI Command	90
15.10 CCT Toggle Performance	93
16 Revision History	95
·	

Important Note: Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.



1 Introduction

This engineering report describes an isolated flyback LED driver with 3-in-1 dimming, DALI dimming and AC toggle CCT. It is designed to drive a nominal LED voltage string of 36 V at 800 mA from an input voltage range of 180 VAC to 265 VAC. The LED driver utilizes the LYT6067C from the LYTSwitch-6 family of devices.

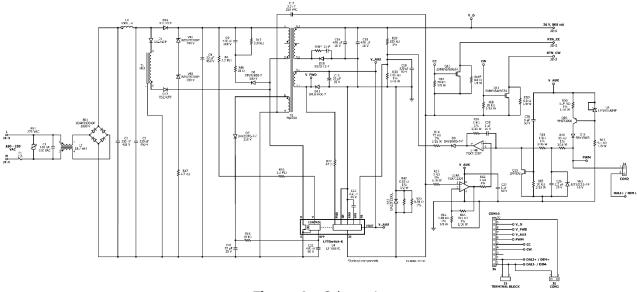
DER-754 is a high-line input flyback converter design added with a switched valley-fill PFC circuit. Through the PFC circuit, the design meets the high power factor requirement in LED lighting application while reducing loss by direct energy transfer. The key design goals were high efficiency, high power factor across the input voltage range, and both 3-in-1 dimmable and DALI dimmable from 0% to 100%. CCT toggle provides LED color selection. The user can choose between neutral white, cool white and warm white by toggling the AC input.

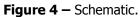
This document contains the power supply specification, schematic diagram, bill of materials, transformer documentation, printed circuit board layout, and performance data.

Figure 1 – Populated Circuit Board.

Figure 2 – Populated Circuit Board, Top View.

Figure 3 – Populated Circuit Board, Bottom View.


2 **Power Supply Specification**


The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section.

Description	Symbol	Min	Тур	Max	Units	Comment
Input						
Voltage	V _{IN}	180	230	265	Vac/Hz	2 Wire – No P.E.
Frequency	f _{LINE}		50			
Output						
Output Voltage	V _{OUT}	30	36		V	CC Threshold: 0.8 A.
Output Current	I OUT		800		mA	
Total Output Power						
Continuous Output Power	Pout		29		W	
Efficiency						
Full Load	η		86		%	At 230 VAC / 50 Hz. 25 °C Ambient Temperature.
Average Efficiency			>86		%	Meets DOE Level VI.
Environmental						
Conducted EMI			CISPR 15B /	EN55015	В	
Safety			Isola	ted		
Ring Wave (100 kHz)			2.5		kV	
Differential Mode (L1-L2)			1		kV	
Power Factor			0.9			Measured at 180 VAC / 50 Hz and 265 VAC / 50 Hz.
Ambient Temperature	Тамв			40	٥C	Free Air Convection, Sea Level. At 230 VAC Input.

3 Schematic

4 **Circuit Description**

The LYTSwitch-6 device (LYT6067C) combines a 650 V power MOSFET, sense elements, a safety-rated feedback mechanism, along with both primary-side and secondary-side controllers in one device. Since LYTSwitch-6 ICs use an integrated communication link, FluxLink[™], accurate control of the secondary-side by the primary-side is possible and close component proximity is utilized. The LYTSwitch-6 IC is designed to deliver a 29 W flyback power supply with a switched valley-fill PFC providing a high power factor for 800 mA constant current output at a nominal voltage of 36 V throughout the input range of 180 VAC to 265 VAC.

4.1 *Input Circuit Description*

Fuse F1 isolates the circuit and provides protection from component failures. Varistor RV1 acts as a voltage clamp in case of voltage spikes from transient line surge. Bridge rectifier BR1 rectifies the AC line voltage and provide a full wave rectified DC across the input capacitors C2 and C3. Capacitor C1, L2, C2, L3, and C3 forms a 2-stage LC EMI filter to suppress differential and common mode noise caused by the PFC and flyback switching action.

The bulk capacitor C4 provides input line ripple voltage filtering for a stable flyback DC supply voltage and helps reduce EMI noise. It also stores excess energy generated by the PFC during the power switch turn off time.

Rectifier diode D16 delivers the charging current to C4 from the input rectified voltage. During FET off time, D16 blocks current from PFC supply so that flyback DC supply is isolated.

4.2 *Primary Circuit*

One end of transformer T2 primary is connected to the positive output terminal of the bulk capacitor C4 while the other side is connected to the drain of the integrated 650 V power MOSFET inside the LYTSwitch-6 IC U4.

A low cost RCD snubber clamp formed by D8, R46, R17, and C9 limits the peak Drain voltage spike of U4 at the instant turn-off of the MOSFET. The clamp helps dissipate the energy stored in the leakage reactance of transformer T2.

The VOLTAGE MONITOR (V) pin of the LYTSwitch-6 IC is connected to the positive of the bulk capacitor C4 to provide input voltage information. The voltage across the bulk capacitor C4 is sensed and converted into current through V pin resistors R4 and R45 to provide detection of overvoltage. The I_{OV-} determines the input overvoltage threshold.

The IC is kick-started by an internal high-voltage current source that charges the BPP pin capacitor C11 when AC is first applied. Primary-side will listen for secondary request signals for around 82 ms. After initial power-up, primary-side assumes control first and requires a handshake to pass the control to the secondary-side. During normal operation

the primary-side block is powered from an auxiliary winding on the transformer. The output of this is configured as a flyback winding which is rectified and filtered using diode D7 and capacitor C10. Resistor R18 limits the current being supplied to the BPP pin of the LYTSwitch-6 U4.

The thermal shutdown circuitry senses the primary MOSFET die temperature. The threshold (T_{SD}) is typically set to 142 °C with 70 °C hysteresis $T_{SD(H)}$. When the die temperature rises above this threshold the power MOSFET is disabled and remains disabled until the die temperature falls by $T_{SD(H)}$ at which point it is re-enabled. A large hysteresis of 70 °C is provided to prevent over-heating of the PCB due to continuous fault condition.

4.3 *LYTSwitch-6 Secondary-Side Control*

The secondary side control of the LYTSwitch-6 IC provides output voltage, output current sensing and drive a MOSFET providing synchronous rectification. The secondary of the transformer is rectified by D10 and filtered by the output capacitors C16 and C18. An optional RC snubber (R48 and C14) can be added across the output diode to reduce the voltage stress across it. The secondary side of the IC is powered from an auxiliary winding FL3 and FL4.

During constant voltage mode operation, output voltage regulation is achieved through sensing the output voltage via divider resistors R29 and R30. The voltage across R30 is fed into the FEEDBACK (FB) pin with an internal reference voltage threshold of 1.265 V. Filter capacitor C19 is added across R30 to eliminate unwanted noise that might trigger the OVP function or increase the output ripple voltage.

During constant current operation, the output current is set by the sense resistors R43 and R24 across the IS pin and the GND pin. The internal reference threshold for the IS pin is 35.8 mV. Diode D13 in parallel with the current sense resistor serves as protection for IS pin during output short-circuit conditions.

The thermal foldback is activated when the secondary controller die temperature reaches 124 °C, the output power is reduced by reducing the constant current reference threshold.

4.4 *PFC Circuit Operation*

Without the added PFC circuit, the power factor of the flyback power supply is normally around 0.5 to 0.6 at full load condition. Input from the bridge rectifier (BR1) will just directly feed the bulk capacitor (C4) that charges and recharges till the next voltage peak fed to it. The input charging pulse current must be high enough to sustain the load until the next peak. This means that the charging pulse current is around 5-10 times higher than the average current with a high phase angle difference from the voltage waveform; hence, the expected PF from this standard configuration is low and THD is high.

The added PFC circuit is called "Switched Valley-Fill Single Stage PFC" (SVF S²PFC). Composed of an inductor T1 and diodes (D1 and D17) connected directly to the DRAIN (D) pin of the LYTSwitch-6 IC. Through this, the LYTSwitch-6 IC flyback switching action is able to draw a high frequency pulse current from the full wave rectified input. This will reduce the rms input current and the phase angle difference from the input line voltage will be lower; hence, power factor will increase and will improve THD.

The PFC inductor T1 operates in DCM mode. At turn ON time, current delivered by the rectified input is stored in the PFC inductor which is then delivered via direct energy transfer to the flyback transformer T2. Excess energy from the PFC inductor that is not delivered to the load is being stored to the bulk capacitor. During no-load and light load conditions, the secondary requires less energy from the primary; therefore, more excess energy from the PFC inductor is stored on the bulk capacitor causing the voltage to rise gradually which will be higher than that of the peak input. For this a Zener-resistor clamp (VR1, VR2, R47) was added in parallel with the bulk capacitor to limit the rise in voltage. The expected voltage stress across the bulk capacitor C4 will be higher than the peak input voltage. The Zener voltage is set at 400 V; when the bulk voltage goes beyond this, the Zener diodes conduct and bleed current from the bulk capacitor through resistor R47. This prevents the bulk capacitor voltage to rise above 450 V. The power dissipation of this Zener-resistor clamp should be considered at the worst-case creeping of the bulk voltage - happens usually at light load condition. Diodes D1 and D17 are connected in series to withstand voltage stress caused by the resonance ringing during the FET turn off. The variability of the PFC inductor peak current will be compensated by the LYTSwitch-6 IC primary and secondary-side control maintaining the voltage regulation at all conditions.

4.5 *3-in-1 Dimming Circuit*

The 3-in-1 dimming circuit enables utilizing just two terminals for three possible types of dimming input signals. Dimming is done by sensing the output current, amplifying the signal, comparing it with a variable reference and injecting current into the FB pin.

Output current is sensed through IS pin resistors R43 and R24. The output current passes through these resistors and the resulting voltage signal is then passed through the non-inverting amplifier circuit R15, R16, R63, U14A, and C27. The gain is set by R16 and R63 to 262 or about 9.4 V maximum. The output of the op-amp (pin 1) connects to the positive input (pin 5) through R62. The signal going to the negative input (pin 6) comes from either of three possible inputs: variable DC supply (0-10 V), variable resistance (0-100 k Ω), or variable duty PWM signal (0-100%, 300-3kHz).

The basic principle of the circuitry is that the output at pin 1 of U14A will always try to match the voltage at pin 6 of U14B which is set by the dimming input. Since U14A is configured as a non-inverting op-amp and its input voltage signal is directly proportional to the output current, an increase in the voltage at pin 6 of U14B will result to an increase in the output current. When the dimming input is a variable DC supply, the

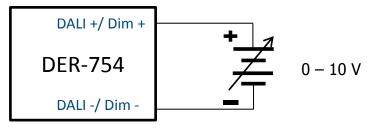
voltage at pin 6 of U14B will just be the set voltage of the DC supply. When the dimming input is a variable duty PWM signal, the averaging circuit composed of R20 and C26 converts the signal into DC before feeding to the op-amp input. A constant current source composed of R64, R66, U8, and Q10 is used to convert the variable resistance input into the desired variable DC signal. Shunt regulator U8 clamps the voltage at R66, therefore setting the emitter current constant. The emitter current of Q10 is roughly equal to its collector current (around 100 μ A) which is connected to the variable resistance input which in turn produces the 0-10V needed at pin 6 of U14B. Zener diode VR3 and D18 are placed for protection in case the user have interchanged the dimming input causing inverted polarity or in case the user forgot to remove the jumpers of connectors J4 and J5 and engaged the DALI dimming. The dimming circuit can also be controlled via DALI dimming instead of 3-in-1 dimming by disconnecting the jumpers of J4 and J5.

At start-up, the op-amp output is initially low which causes an unwanted spike in output current. To counter this effect, a blanking circuit Q11, R65, and C38 is added which initially pulls the inverting input (pin 6) down and in turn results to op-amp output high.

The op-amp output (pin 7) is connected to the FB pin through D9 and R14. Depending on the op-amp output, current is injected into the FB pin. The feedback voltage will go up as current is injected. This will normally bring the output voltage down in CV mode. However, since the LED load is a constant voltage, it can't bring the voltage down. Instead, the output current goes down as a consequence.

The current injection loop has to be slow enough in order not to trigger feedback overvoltage protection when doing a step load from 100% to 0%. This is done by increasing the value of R14.

A low-input offset operational amplifier is also recommended to reduce unit-to-unit variability. It is also important to place the dimming circuit close to the IS pin and FB pin to prevent noise from disturbing the loop.



4.5.1 *3-in-1 Dimming Set-up*

Before testing the 3-in-1 dimming, make sure to check the following:

- 1. The daughterboard **should not be connected** to the main board.
 - 2. R69 and R70 **should be placed**
- 3. The female jumpers (Sullins PN: SPC02SYAN) **should be inserted** to connectors J4 and J5.
- 4. Refer to the figures below for the proper wiring diagram.

1. Variable DC Supply

2. Variable PWM Duty Cycle

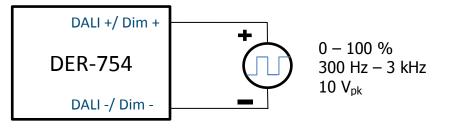
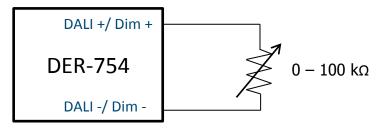



Figure 6 – Dimming Set-up for Variable PWM Duty Cycle Dimming Input.

3. Variable Resistor

5 PCB Layout

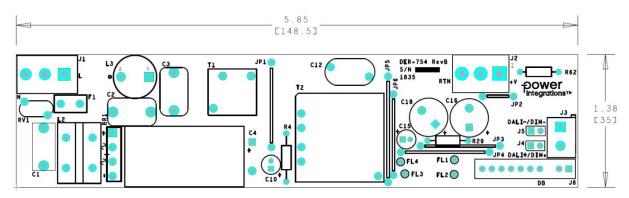


Figure 8 – Main Board Top Side.

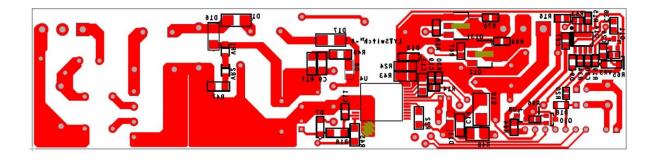


Figure 9 – Main Board Bottom Side.

6 Bill of Materials

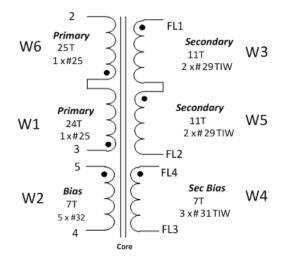
6.1 *Electrical*

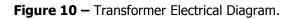
Item	Qty	Ref Des	Description	Mfg. Part Number	Mfg.
1	1	BR1	Bridge Rectifier, 1000 V, 4 A, 4-ESIP, D3K, -55°C ~ 150°C (TJ), Vf=1V @ 7.5 A	UD4KB100-BP	Micro Commercial
2	1	C1	$0.1 \ \mu$ F, ±20%, Film,X2 Safety Rated, 310 VAC, 630 VDC, Polypropylene (PP), Metallized Radial	BFC233920104	Vishay
3	1	C2	330 nF, 450 V, METALPOLYPRO	ECW-F2W334JAQ	Panasonic
4	1	C3	330 nF, 450 V, METALPOLYPRO	ECW-F2W334JAQ	Panasonic
5	1	C4	22 μF, ±20%, 450 V, Electrolytic, -25°C ~ 105°C, 8000 Hrs @ 105°C, (16 x 31.5)	UPW2W220MHD	Nichicon
6	1	C9	470 pF, ±10%, 500 V, X7R, Ceramic, SMT, MLCC 1206	CC1206KKX7RBBB471	Yageo
7	1	C10	22 μF, 35 V, Electrolytic, Gen. Purpose, (5 x 11)	UVR1V220MDD6TP	Nichicon
8	1	C11	470 nF, 50 V, Ceramic, X7R, 0805	GRM21BR71H474KA88L	Murata
9	1		3.3 nF, Ceramic, Y1	440LD33-R	Vishay
10	1		2.2 μF, 25 V, Ceramic, X7R, 1206	TMK316B7225KL-T	Taiyo Yuden
11	1		220 pF, 630 V, Ceramic, NP0, 1206	C3216C0G2J221J	TDK
12	1		22 μF, 35 V, Electrolytic, Gen. Purpose, (5 x 11)	UVR1V220MDD6TP	Nichicon
13	1		$470 \ \mu\text{F}, 50 \ \text{V}, \text{Electrolytic, Gen. Purpose, (10 x 20)}$	EKMG500ELL471MJ20S	United Chemi-Cor
14	1		$470 \ \mu\text{F}, 50 \ \text{V}, \text{Electrolytic, Gen. Purpose, (10 x 20)}$	EKMG500ELL471MJ20S	United Chemi-Cor
15	1		330 pF 50 V, Ceramic, X7R, 0603	CC0603KRX7R9BB331	Yageo
16	1		2.2 μF, 25 V, Ceramic, X7R, 0805	C2012X7R1E225M	TDK
17	1	C20	$1 \ \mu\text{F}, \pm 10\%$,50 V, Ceramic, X7R, AEC-Q200, Automotive, Boardflex Sensitive, 0805,-55°C ~ 125°C	CGA4J3X7R1H105K125AE	TDK
18	1	C28	1 μ F, ±20%, 16 V, Ceramic, X7R, Boardflex Sensitive, Soft Termination, -55°C ~ 125°C, 0603		Kemet
19	1	C38	$1~\mu\text{F},~\pm10\%$,50 V, Ceramic, X7R, AEC-Q200, Automotive, Boardflex Sensitive, 0805, -55°C \sim 125°C	CGA4J3X7R1H105K125AE	TDK
20	1	D1	600 V, 2 A, Super Fast, 35 ns, DO-214AC, SMA	ES2J-LTP	Micro Commercia
21	1	D7	250 V, 0.2 A, Fast Switching, 50 ns, SOD-123 BAV21W-7-F		Diodes, Inc.
22	1	D8	600 V, 1 A, Rectifier, Glass Passivated, POWERDI123	DFLR1600-7	Diodes, Inc.
23	1		75 V, 0.15 A, Switching,SOD-323	BAV16WS-7-F	Diodes, Inc.
24	1		400 V, 2 A, Super Fast, 35 ns, DO-214A, SMB	ES2G-13-F	Diodes, Inc.
25	1		400 V, 1A, DIODE SUP FAST 1 A PWRDI 123	DFLU1400-7	Diodes, Inc.
26	1		200 V, 1 A, MINI2	DA22F2100L	Panasonic
27	1		600 V, 1 A, Standard Recovery, SMA	S1J-13-F	Diodes, Inc.
28	1		600 V, 2 A, Super Fast, 35 ns, DO-214AC, SMA	ES2J-LTP	Micro Commercia
29	1		100 V, 0.2 A, Fast Switching, 50 ns, SOD-323	BAV19WS-7-F	Diodes, Inc.
30	1		2 A, 250 V, Slow, Long Time Lag, RST	RST 2	Belfuse
31	1		18.7 mH, 0.22 A, Common Mode Choke	RL-4400-1-18.7	Renco
32	1				
33	1		1000 μH, 1.20 ohm, Isat: 0.880 A, Irms: 0.490 A	RL-5480-4-1000	Renco
			PNP, Small Signal BJT, 40 V, 0.2 A, SOT-23	MMBT3906LT1G	On Semi
34	1	-	60 V, 115 mA, SOT23-3	2N7002-7-F	Diodes, Inc.
35	1	-	MOSFET, N-CH, 60 V, 5.4 A (Ta), TO-261-4, TO-261AA, SOT223	ZXMN6A09GTA	Diodes, Inc.
36	1		MOSFET, N-CH, 60 V, 5.4 A (Ta), TO-261-4, TO-261AA, SOT223	ZXMN6A09GTA	Diodes, Inc.
37	1		RES, 2.2 MΩ, 5%, 1/4 W, Carbon Film	CFR-25JB-2M2	Yageo
38	1		RES, 75.0 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF7502V	Panasonic
39	1		RES, 1 kΩ, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF1001V		Panasonic
40	1		RES, 1.00 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF1001V		Panasonic
41	1		RES, 510 kΩ, 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ514V	Panasonic
42	1		RES, 10 kΩ, 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ103V	Panasonic
43	1		RES, 1 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF1001V	Panasonic
44	1	R20	RES, 20 k, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF2002V	Panasonic

45	1	R22	RES 47 0 50% 1/4 W/ Thick Film 1206	ERJ-8GEYJ470V	Panasonic
45	1		RES, 47 Ω, 5%, 1/4 W, Thick Film, 1206		
	1		RES, 0.39 Ω 1/4W, 1%,Thick Film, 1206	ERJ-8RQFR39V	Panasonic
47	1		RES, 205 kΩ, 1%, 1/4 W, Metal Film	MFR-25FBF-205K	Yageo
48	1		RES, 7.15 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF7151V	Panasonic
49	1		RES, 1 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF1001V	Panasonic
50	1		RES, SMD, 0.05 Ω, 1%, 1/2W, 1206, ±100ppm/°C, -55°C ~ 155°C	CSR1206FT50L0	Stackpole
51	1	R45	RES, 2.2 MΩ, 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ225V	Panasonic
52	1	R46	RES, 20 Ω, 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ200V	Panasonic
53	1	R47	RES, 4.7 kΩ, 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ472V	Panasonic
54	1	R48	RES, 100 Ω, 5%, 1/2 W, Thick Film, 1210	ERJ-14YJ101U	Panasonic
55	1	R62	RES, 1 kΩ, 1%, 1/4 W, Metal Film	MFR-25FBF-1K00	Yageo
56	1	R63	RES, 261 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF2613V	Panasonic
57	1	R64	RES, 9.1 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ912V	Panasonic
58	1	R65	RES, 10 kΩ, 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ103V	Panasonic
59	1	R66	RES, 6.34 kΩ, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF6341V	Panasonic
60	1	R67	RES, 20 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ203V	Panasonic
61	1	R68	RES, 20 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ203V	Panasonic
62	1	R69	RES, 0 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEY0R00V	Panasonic
63	1	R70	RES, 0 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEY0R00V	Panasonic
64	1	RV1	275 VAC, 23 J, 7 mm, RADIAL	V275LA4P	Littlefuse
65	1	T1	Bobbin, EE13, Vertical, 10 pins	P-1302-2	Pin Shine
66	1	T2	Bobbin, PQ20/20, Vertical, 14 pins	CPV-PQ20/20-1S14PZ	Ferroxcube
67	1	U14	IC, DUAL Op Amp, General Purpose, 2.7 MHz, Rail to Rail, 8-SOIC (0.154", 3.90 mm Width), 8-SO TSX712IDT		ST Micro
68	1	U4	VTSwitch-6 Integrated Circuit InSOP24D		Power Integrations
69	1	U8	1.24 V Shunt Regulator IC, 1%, -40 to 85 C, SOT23-3 LMV431AIMF Nationa		National Semi
70	1	VR1			Vishay
71	1	VR2	DIODE, ZENER, 200 V, 800 MW, DO219AB	BZD27C200P-E3-08	Vishay
72	1	VR3	15 V, 5%, 500 mW, SOD-123	BZT52C15-7-F	ON Semi

6.2 *Mechanicals and Miscellaneous*

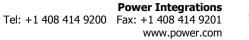
Item	Qty	Ref Des	Description	Mfg. Part Number	Mfg.
73	1	J1	CONN TERM BLOCK 5.08 MM 3POS, Screw - Leaf Spring, Wire Guard	ED120/3DS	On Shore Tech
74	1		3 Position (1 x 3) header, 5 mm (0.196) pitch, Vertical, Screw - Rising Cage Clamp	1715035	Phoenix Contact
75	1	J3	CONN TERM BLOCK, 2 POS, 5mm, PCB	ED500/2DS	On Shore Tech
76	1	J4	2 Position (1 x 2) header, 0.1 pitch, Vertical 22-03-2021 Mole		Molex
77	1	J5	2 Position (1 x 2) header, 0.1 pitch, Vertical 22-03-2021 Mole:		Molex
78	1	JP1	Wire Jumper, Insulated, #24 AWG, 0.8 in C2003A-12-02 Gen Cable		Gen Cable
79	1	JP2	Wire Jumper, Insulated, #24 AWG, 0.4 in	C2003A-12-02	Gen Cable
80	1	JP3	Wire Jumper, Insulated, #24 AWG, 0.8 in	C2003A-12-02	Gen Cable
81	1	JP4	Wire Jumper, Insulated, #24 AWG, 0.8 in C2003A-12-02 Gen Cat		Gen Cable
82	1	JP5	Wire Jumper, Non-insulated, #30 AWG, 1.1 in	299/3 SV001	Alpha Wire
83	1	JP6	Wire Jumper, Non insulated, 30 AWG, 0.9 in	299/3 SV001	Alpha Wire


6.3 *Female Shorting Jumper for Connectors J4 and J5*


Qty	Description	Mfg Part Number	Mfg
2	CONN JUMPER SHORTING GOLD FLASH, FEM, 2POS .100 POLAR	SPC02SYAN	Sullins Connector

7 Flyback Transformer (T1) Specification

7.1 *Electrical Diagram*



7.2 *Electrical Specifications*

Parameter	Condition	Spec.
Nominal Primary Inductance	Measured at 1 V_{PK-PK} , 100 kHz switching frequency, between pin 3 and pin 2 with all other windings open.	730 μH
Tolerance	Tolerance of Primary Inductance.	±5%
Leakage Inductance	Measured across primary winding with all other windings shorted.	<5 μH

7.3 Material List

Item	Description	
[1]	Core: PQ2020 PC95 or Equivalent.	
[2]	Bobbin, PQ2020, Vertical, 5 Pins.	
[3]	Magnet Wire: #25 AWG.	
[4]	Magnet Wire: #32 AWG.	
[5]	TIW: # 29 AWG.	
[6]	TIW: # 31 AWG.	
[7]	Polyester Tape: 12 mm.	
[8]	Polyester Tape: 12 mm.	

7.4 Transformer Build Diagram

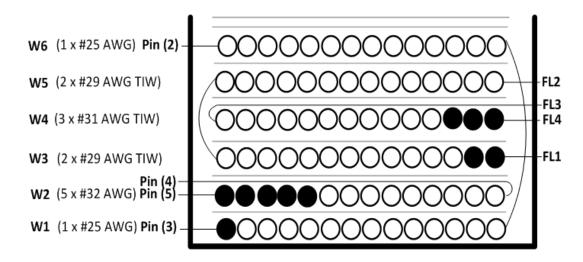
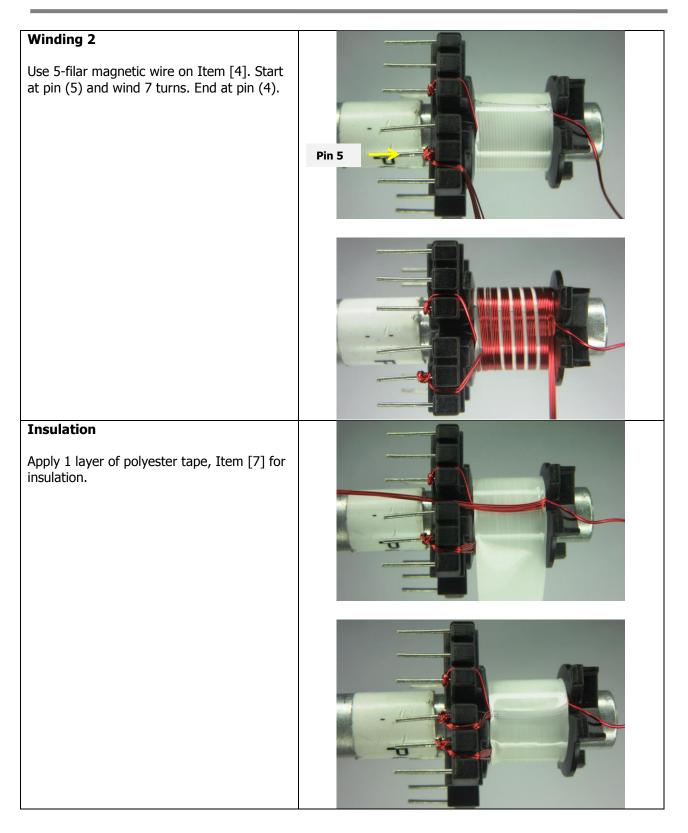


Figure 11 - Transformer Build Diagram.

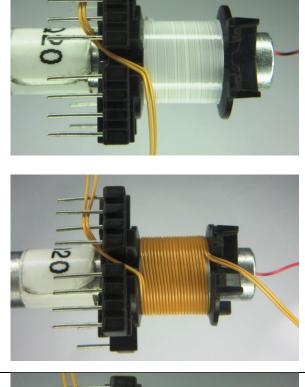
7.5 Transformer Construction

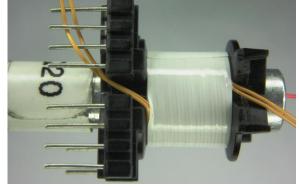

Winding Directions	Bobbin is oriented on winder jig such that terminal pin 1-6 is on the right side. The winding direction is clockwise.
Winding 1	Use magnetic wire Item [3]. Start at pin 3 and wind 24 turns in 1 layer. Do not terminate winding, leave the winding floating.
Insulation	Apply 1 layer of polyester tape, Item [7] for insulation
Winding 2	Use 5-filar magnetic wire on Item [4]. Start at pin (5) and wind 7 turns. End at pin (4).
Insulation	Apply 1 layer of polyester tape, Item [7] for insulation.
Winding 3	Start on the other side of the bobbin. Use a triple insulated wire on Item [5]. Starting with a fly lead (FL1), wind 11 turns evenly in 1 layer. Do not terminate winding yet.
Insulation	Apply 1 layer of polyester tape, Item [7] for insulation.
Winding 4	Start on the side of FL1. Use a trifilar triple insulated wire, Item [6]. Start as a fly lead (FL4), wind 7 turns evenly in 1 layer and finish as a fly lead (FL3).
Insulation	Apply 1 layers of polyester tape, Item [7] for insulation.
Winding 5	Continuing from winding 3, wind 11 turns and finish with a fly lead (FL2).
Insulation	Apply 1 layers of polyester tape, Item [7] for insulation.
Winding 6	Continuing from W1, wind 25 turns evenly and finish at pin (2).
Insulation	Apply 2 layers of polyester tape, Item [7] for insulation.
Core Grinding	Grind the center leg of the ferrite core to meet the nominal inductance specification of 730 $\mu\text{H}.$
Assemble Core	Use Item [8] to fix the 2 cores into the bobbin. Cut the terminal of the clip on the left side of the bobbin, looking at the bottom side facing the fly leads of the secondary winding.
Pins	Cut any excess pins of the bobbin (pins without wire terminations).
Finish	Dip the transformer in a 2:1 varnish and thinner solution.

Winding Directions Bobbin is oriented on winder jig such that terminal pin 1-6 is on the right side. The winding direction is clockwise.	Pin 1
Winding 1 Use magnetic wire Item [3]. Start at pin 3 and wind 24 turns in 1 layer. Do not terminate winding, leave the winding floating.	Pin 3
Insulation Apply 1 layer of polyester tape, Item [7] for insulation	

7.6 Transformer Winding Illustrations

FL1

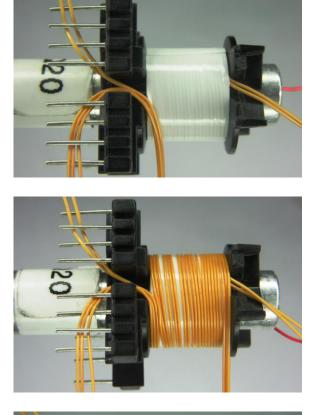

Winding 3

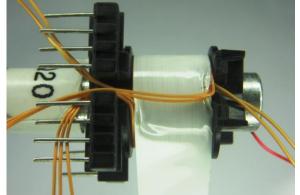

Insulation

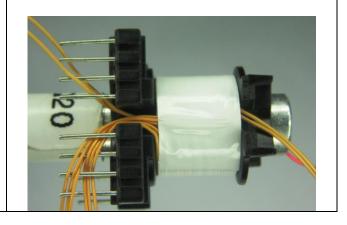
insulation.

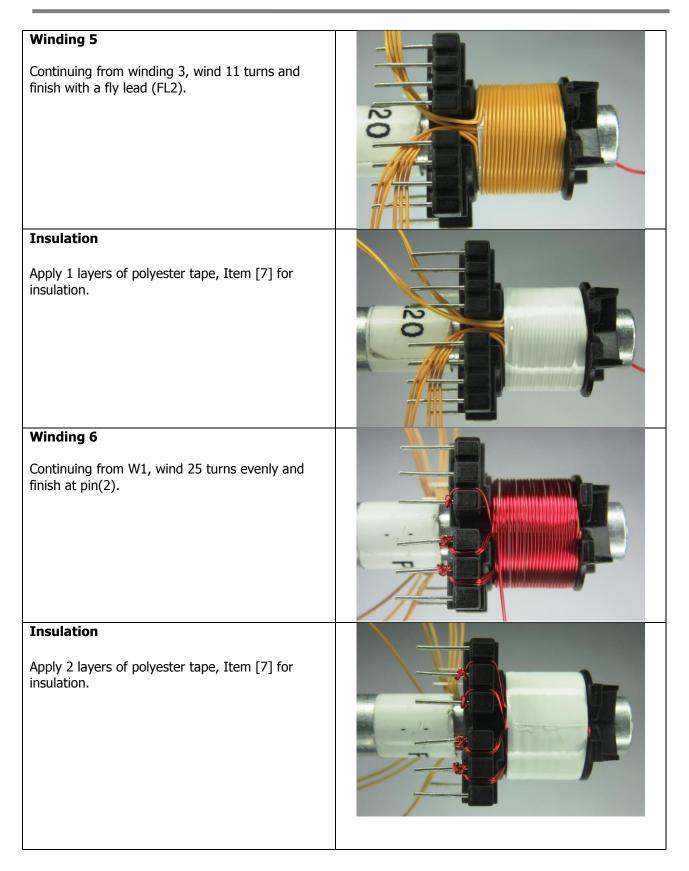
Start on the other side of the bobbin. Use a triple insulated wire on Item [5]. Starting with a fly lead (FL1), wind 11 turns evenly in 1 layer. Do not terminate winding yet.

Apply 1 layer of polyester tape, Item [7] for




Winding 4


Start on the side of FL1. Use a trifilar triple insulated wire, Item [6]. Start as a fly lead (FL4), wind 7 turns evenly in 1 layer and finish as a fly lead (FL3).

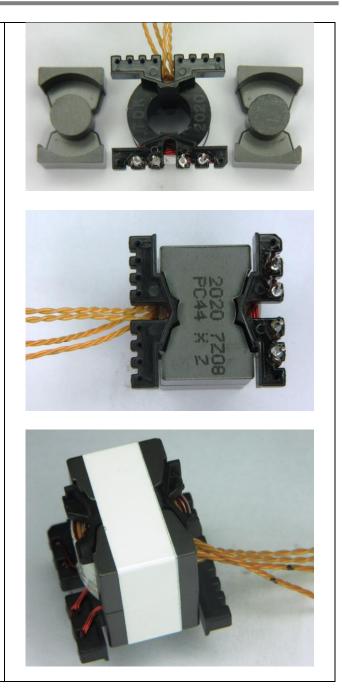


Apply 1 layer of polyester tape, Item [7] for insulation.

Core Termination

Use two PC44 PQ2020 cores, Item [1]. Grind the center leg of the ferrite core to meet the nominal inductance specification of 730 μ H.

Core Fixing


Use Item [8] to fix the 2 cores into the bobbin. Cut the terminal of the clip on the left side of the bobbin, looking at the bottom side facing the fly leads of the secondary winding.

Pins

Cut any excess pins of the bobbin (pins without wire terminations).

Varnishing

Dip the transformer in a 2:1 varnish and thinner solution

8 **PFC Inductor (T2) Specifications**

8.1 Electrical Diagram

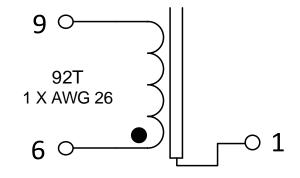


Figure 12 – Inductor Electrical Diagram.

8.2 *Electrical Specifications*

Parameter	Condition	Spec.
Nominal Primary Inductance	Measured at 1 V_{PK-PK} , 100 kHz switching frequency, between pin 9 and pin 6.	680 μH
Tolerance	Tolerance of Primary Inductance.	±5%

8.3 *Material List*

Item	Description
[1]	Core: EE13.
[2]	Bobbin: Bobbin, EE13, Vertical, 10 pins.
[3]	Magnet Wire: #26 AWG.
[4]	Transformer tape: 6.5 mm.
[5]	Transformer tape: 4 mm.

8.4 Inductor Build Diagram

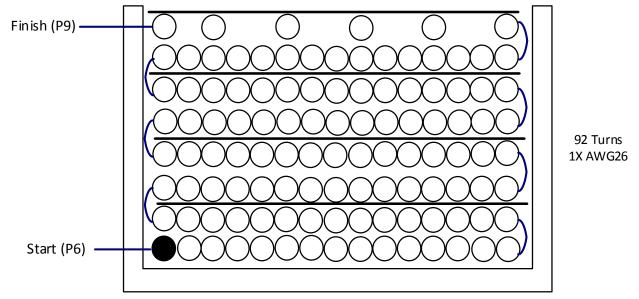
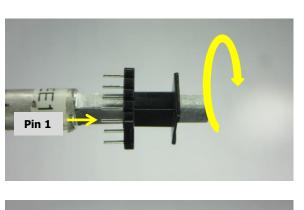
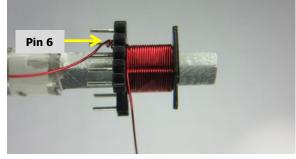


Figure 13 – Inductor Build Diagram.

8.5 Inductor Construction

Winding Directions	Bobbin is oriented on winder jig such that terminal pin 1-10 is in the left side. The winding direction is clockwise.
Winding 1	Prepare the magnetic wire Item [3] for winding. Start at pin 6 and wind 91 turns in 8 layers.
Insulation	Add 1 layer of tape, Item [4] for every 2 layers of winding 1.
Winding 1	Finish the winding on pin 9.
Insulation	Add 2 layers of tape, Item [4] for insulation.
Core Grinding	Grind the center leg of the ferrite core evenly until it meets the nominal inductance of 680 μ H. Inductance is measured across pin 9 and pin 6.
Assemble Core	Assemble the 2 cores on the bobbin.
Core Termination	Prepare a copper strip with a soldered magnetic wire, Item [3], at the middle as shown in the picture. Apply copper strip at the bottom part of the core and terminate the magnetic wire on pin 1.
Core Tape	Add 2 layers of tape, Item [5], around the core to fix the 2 cores into the bobbin.
Pins	Pull out or cut terminal pin no. 2, 3, 4, 5, 7, 8, and pin 10.
Finish	Dip the transformer assembly in 2:1 varnish and thinner solution.

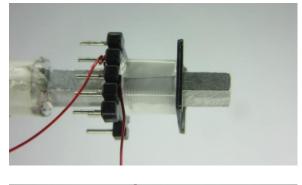

8.6 *Inductor Winding Illustrations*

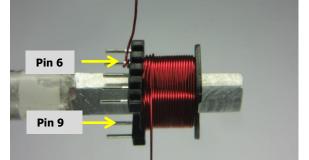

Winding Directions

Bobbin is oriented on winder jig such that terminal pin 1 - 10 is in the left side. The winding direction is clockwise.

Winding 1

Prepare the magnetic wire Item [3] for winding. Start at pin 6 and wind 91 turns in 8 layers.

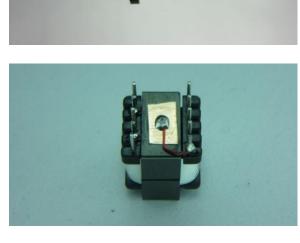



Insulation

Add 1 layer of tape, Item [4] for every 2 layers of winding 1

Winding 1

Finish at pin 9.



Insulation

Add 2 layers of tape, Item [4] for insulation

Prepare a copper strip with a soldered magnetic wire, Item [3], at the middle as shown in the picture. Apply copper strip at the bottom part of the core and terminate the magnetic wire on pin 1.

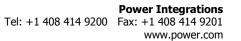
Core Tape

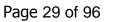
Add 2 Layers of tape Item [5] around the core to fix the 2 cores into the bobbin.

Pins

Pull out or cut terminal pin no. 2, 3, 4, 5, 7, 8, and pin 10.

Finish


Dip the transformer assembly in 2:1 varnish and thinner solution.



9 **Design Spreadsheet**

1	LYTSwitch- 6_020318; Rev.1.2; Copyright Power Integrations 2018	INPUT	INFO	OUTPUT	UNITS	Switched Valley-Fill Single Stage PFC (SVF S^2PFC)
2	Application Variables					
3	VACMIN	180		180	V	Minimum Input AC Voltage
4	VACNOM	230		230	V	Nominal AC Voltage (For universal designs low line nominal voltage is displayed)
5	VACMAX	265		265	V	Maximum Input AC Voltage
6	VACRANGE			HIGH LINE		Input Voltage Range
	FL			50	Hz	Line Frequency
8	CIN	22.0000		22.0000	μF	Minimum Input Capacitance
9	V_CIN			450	V	Input Capacitance Recommended Voltage Rating
10	VO	36.00		36.00	V	Output Voltage
11	IO	0.80		0.80	А	Output Current
	PO			28.80	W	Total Output Power
13	N	86.00		86.00		Estimated Efficiency
	Z			0.50		Loss Allocation Factor
	Parametric Calculation	ons Basis				
16	ILIMcalcBASIS	Nom		Nom		ILIM Calculations Basis - NOM, MAX or MIN only
17	PARcalcBASIS	VACNOM		VACNOM		Calculated Results Based on Selected VAC - VACNOM, VACMAX, VACMIN or Worst Case only
	Primary Controller Se	ection				
	DEVICE_MODE	Standard		Standard		Device Current Limit Mode
	DEVNAME	LYT6067C		LYT6067C		PI Device Name
	RDSON			1.82	ohms	Device RDSON at 100degC
	ILIMITMIN			1.348	А	Minimum Current Limit
	ILIMITTYP			1.450	Α	Typical Current Limit
	ILIMITMAX			1.552	А	Maximum Current Limit
	BVDSS			650	V	Drain-Source Breakdown Voltage
26	VDS			2.00	V	On state Drain to Source Voltage
	VDRAIN			524.77	V	Peak Drain to Source Voltage during Fet turn off
	Worst Case Electrical	Parameters				
	Boost Converter					
	IBOOSTRMS			219.55	mA	Boost RMS current
	IBOOSTMAX			722.71	mA	Boost PEAK current
	IBOOSTAVG			112.60	mA	Boost AVG current
	IINRMS			133.09	mA	Input RMS current
	PF_est			0.9889		Estimated Power Factor
	Flyback Converter					
	FSMIN	49800		49800	Hz	Minimum Switching Frequency in a Line Period
37	FSMAX			102564.55	Hz	Maximum Switching Frequency in a Line Period
	KPmin			1.0602		Minimum KP in a Line Period for VAC specified by PARcalcBASIS
	IFETRMS			331.48	mA	Fet RMS current
	IFETMAX			1453.95	mA	Fet PEAK current
	IPRIRMS			0.2766	А	Primary Winding RMS current
	IPRIMAX			1.3101	А	Primary Winding PEAK current
	IPRIAVG			0.0072	А	Primary Winding AVG current
	IPRIMIN			721.71	mA	Primary Winding Minimum current
	ISECRMS			1.16	А	Secondary RMS current
	ISECMAX			2.99	Α	Secondary PEAK current
47	Boost Choke Constru	ction Parame	eters			
48	RATIO_LBST_LFB	0.9300		0.9300		Boost Inductance and Flyback Primary Inductance Ratio
	LBOOSTMIN			643.30		Minimum Boost Inductance

50	LBOOSTNOM			677.16	μH	Nominal Boost Inductance
51	LBOOSTMAX			711.02	μΠ μΗ	Maximum Boost Inductance
52	LBOOSTTOL	5.00		5.00	%	Boost Inductance Tolerance
53	Boost Core and Bobb			5.00	70	boost inductance Tolerance
54	CR_TYPE_BOOST	EE13		EE13		Boost Core
55	CR_PN_BOOST			PC40EE13- Z		Boost Core Code
56	AE_BOOST			17.10	mm²	Boost Core Cross Sectional Area
57	LE_BOOST			30.20	mm	Boost Core Magnetic Path Length
-					nH/turns	Boost Core Ungapped Core Effective
58	AL_BOOST			1130.00	2	Inductance
59	VE_BOOST			517.00	mm3	Boost Core Volume
60	BOBBINID_BOOST			548		Bobbin
61	AW_BOOST			22.20	mm²	Window Area of Bobbin
62	BW_BOOST			7.40	mm	Bobbin Width
63	MARGIN_BOOST			0.00	mm	Safety Margin Width
64	BOBFILLFACTOR_Boo st			41.77	%	Boost Bobbin Fill Factor
65	Boost Winding Detai	ls				L
66	NBOOST	92.00		92.00		Boost Choke Turns
67	BP_BOOST			3337.11	Gauss	Boost Peak Flux Density
68	ALG_BOOST			80.00	nH/turns 2	Boost Core Ungapped Core Effective Inductance
69	LG_BOOST			0.25	mm	Boost Core Gap Length
70	L_BOOST	4.00		4.00		Number of Boost Layers
71	AWG_BOOST			30.00		Boost Winding Wire AWG
72	OD_BOOST_INSULAT			0.30	mm	Boost Winding Wire Output Diameter with Insulation
73	OD_BOOST_BARE			0.26	mm	Boost Winding Wire Output Diameter without Insulation
74	CMA_BOOST			402.49	Circular	Boost Winding Wire CMA
75	Flyback Transformer	Construction	Parame	ters	Mils/A	
75 76	Flyback Transformer	Construction	Parame	ters 80	V V	Secondary Voltage Reflected in the Primary Winding
76	VOR	Construction	Parame	80	V	Winding
76 77	VOR LP_MIN	Construction	Parame	80 691.72	V µH	Winding Minimum Flyback Inductance
76 77 78	VOR LP_MIN LP_NOM	Construction	Parame	80 691.72 728.13	V	Winding Minimum Flyback Inductance Nominal Flyback Inductance
76 77	VOR LP_MIN	5.00	Parame	80 691.72 728.13 764.54	V µH µH	Winding Minimum Flyback Inductance Nominal Flyback Inductance Maximum Flyback Inductance
76 77 78 79	VOR LP_MIN LP_NOM LP_MAX LP_TOL	5.00	Parame	80 691.72 728.13	V µН µН µН	Winding Minimum Flyback Inductance Nominal Flyback Inductance
76 77 78 79 80	VOR LP_MIN LP_NOM LP_MAX	5.00	Parame	80 691.72 728.13 764.54	V µН µН µН	Winding Minimum Flyback Inductance Nominal Flyback Inductance Maximum Flyback Inductance
76 77 78 79 80 81	VOR LP_MIN LP_NOM LP_MAX LP_TOL Flyback Core and Bo	5.00 bbin Selection	Parame	80 691.72 728.13 764.54 5.00	V µН µН µН	Winding Minimum Flyback Inductance Nominal Flyback Inductance Maximum Flyback Inductance Flyback Inductance Tolerance
76 77 78 79 80 81 82	VOR LP_MIN LP_NOM LP_MAX LP_TOL Flyback Core and Bo CR_TYPE CR_PN AE	5.00 bbin Selection	Parame	80 691.72 728.13 764.54 5.00 PQ20/20 PQ20/20- 3F3 62.60	V µН µН µН	Winding Minimum Flyback Inductance Nominal Flyback Inductance Maximum Flyback Inductance Flyback Inductance Tolerance Flyback Core Flyback Core Code Flyback Core Cross Sectional Area
76 77 78 79 80 81 82 83	VOR LP_MIN LP_NOM LP_MAX LP_TOL Flyback Core and Bo CR_TYPE CR_PN	5.00 bbin Selection	Parame	80 691.72 728.13 764.54 5.00 PQ20/20 PQ20/20 3F3	V µН µН %	Winding Minimum Flyback Inductance Nominal Flyback Inductance Maximum Flyback Inductance Flyback Inductance Tolerance Flyback Core Flyback Core Code Flyback Core Cross Sectional Area Flyback Core Magnetic Path Length
76 77 78 79 80 81 82 83 83	VOR LP_MIN LP_NOM LP_MAX LP_TOL Flyback Core and Bo CR_TYPE CR_PN AE	5.00 bbin Selection	Parame	80 691.72 728.13 764.54 5.00 PQ20/20 PQ20/20- 3F3 62.60	V µH µH %	Winding Minimum Flyback Inductance Nominal Flyback Inductance Maximum Flyback Inductance Flyback Inductance Tolerance Flyback Core Flyback Core Code Flyback Core Cross Sectional Area
76 77 78 79 80 81 82 83 83 84 85	VOR LP_MIN LP_NOM LP_MAX LP_TOL Flyback Core and Bo CR_TYPE CR_PN AE LE	5.00 bbin Selection	Parame	80 691.72 728.13 764.54 5.00 PQ20/20 PQ20/20- 3F3 62.60 45.70	V μH μH % mm ² mm nH/turns	Winding Minimum Flyback Inductance Nominal Flyback Inductance Maximum Flyback Inductance Flyback Inductance Tolerance Flyback Core Flyback Core Code Flyback Core Cross Sectional Area Flyback Core Ungapped Core Effective
76 77 78 79 80 81 82 83 83 84 85 86	VOR LP_MIN LP_NOM LP_MAX LP_TOL Flyback Core and Bo CR_TYPE CR_PN AE LE AL	5.00 bbin Selection	Parame	80 691.72 728.13 764.54 5.00 PQ20/20 PQ20/20- 3F3 62.60 45.70 2650.00	V μH μH % mm ² mm nH/turns 2	Winding Minimum Flyback Inductance Nominal Flyback Inductance Maximum Flyback Inductance Flyback Inductance Tolerance Flyback Core Flyback Core Code Flyback Core Cross Sectional Area Flyback Core Ungapped Core Effective Inductance
76 77 78 79 80 81 82 83 83 84 85 86 87	VOR LP_MIN LP_NOM LP_TOL Flyback Core and Bo CR_TYPE CR_PN AE LE AL VE	5.00 bbin Selection	Parame	80 691.72 728.13 764.54 5.00 PQ20/20 PQ20/20- 3F3 62.60 45.70 2650.00 2850.00	V μH μH % mm ² mm nH/turns 2	Winding Minimum Flyback Inductance Nominal Flyback Inductance Maximum Flyback Inductance Flyback Inductance Tolerance Flyback Core Flyback Core Code Flyback Core Cross Sectional Area Flyback Core Ungapped Core Effective Inductance Flyback Core Ungapped Core Effective Flyback Core Volume
76 77 78 79 80 81 82 83 83 84 85 86 85 86 87 88	VOR LP_MIN LP_NOM LP_TOL Flyback Core and Bo CR_TYPE CR_PN AE LE AL VE BOBBINID	5.00 bbin Selection	Parame	80 691.72 728.13 764.54 5.00 PQ20/20 PQ20/20- 3F3 62.60 45.70 2650.00 2850.00 P-2036	V μH μH % mm ² mm nH/turns 2	Winding Minimum Flyback Inductance Nominal Flyback Inductance Maximum Flyback Inductance Flyback Inductance Tolerance Flyback Core Flyback Core Code Flyback Core Cross Sectional Area Flyback Core Ungapped Core Effective Inductance Flyback Core Volume Flyback Bobbin
76 77 78 79 80 81 82 83 83 84 85 86 87 88 88 89	VOR LP_MIN LP_NOM LP_MAX LP_TOL Flyback Core and Bo CR_TYPE CR_PN AE LE AL VE BOBBINID BB_ORIENTATION	5.00 bbin Selection	Parame	80 691.72 728.13 764.54 5.00 PQ20/20 PQ20/20- 3F3 62.60 45.70 2650.00 2850.00 P-2036 H	V µH µH % mm ² mm nH/turns ² mm3	Winding Minimum Flyback Inductance Nominal Flyback Inductance Maximum Flyback Inductance Flyback Inductance Tolerance Flyback Core Flyback Core Code Flyback Core Cross Sectional Area Flyback Core Ungapped Core Effective Inductance Flyback Core Volume Flyback Bobbin Orientation H -Horizontal and V -Vertical
76 77 78 79 80 81 82 83 83 84 85 86 87 88 88 89 90	VOR LP_MIN LP_NOM LP_TOL Flyback Core and Bo CR_TYPE CR_PN AE LE AL VE BOBBINID BB_ORIENTATION AW	5.00 bbin Selection PQ20/20	Parame	80 691.72 728.13 764.54 5.00 PQ20/20 PQ20/20- 3F3 62.60 45.70 2650.00 2850.00 P-2036 H 36.00	V µH µH % mm ² mm nH/turns ² mm3 mm ²	Winding Minimum Flyback Inductance Nominal Flyback Inductance Maximum Flyback Inductance Flyback Inductance Tolerance Flyback Core Flyback Core Code Flyback Core Cross Sectional Area Flyback Core Ungapped Core Effective Inductance Flyback Core Volume Flyback Bobbin Flyback Bobbin Orientation H -Horizontal and V -Vertical Flyback Window Area of Bobbin
76 77 78 79 80 81 82 83 83 84 85 86 87 88 88 89 90 91	VOR LP_MIN LP_NOM LP_TOL Flyback Core and Bo CR_TYPE CR_PN AE LE AL VE BOBBINID BB_ORIENTATION AW BW	5.00 bbin Selection PQ20/20	Parame	80 691.72 728.13 764.54 5.00 PQ20/20 PQ20/20- 3F3 62.60 45.70 2650.00 2850.00 P-2036 H 36.00 7.00	V µH µH % mm ² mm nH/turns ² mm ³ mm ² mm ² mm ² mm	Winding Minimum Flyback Inductance Nominal Flyback Inductance Maximum Flyback Inductance Flyback Inductance Flyback Inductance Tolerance Flyback Core Flyback Core Code Flyback Core Cross Sectional Area Flyback Core Ungapped Core Effective Inductance Flyback Core Volume Flyback Bobbin
76 77 78 79 80 81 82 83 83 84 85 86 87 88 87 88 89 90 91 92	VOR LP_MIN LP_NOM LP_MAX LP_TOL Flyback Core and Bo CR_TYPE CR_PN AE LE AL VE BOBBINID BB_ORIENTATION AW BW MARGIN Flyback Winding Det NP	5.00 bbin Selection PQ20/20	Parame	80 691.72 728.13 764.54 5.00 PQ20/20 PQ20/20- 3F3 62.60 45.70 2650.00 2850.00 P-2036 H 36.00 7.00 0.00 49.00	V µH µH % mm ² mm nH/turns ² mm ³ mm ² mm ² mm ² mm	Winding Minimum Flyback Inductance Nominal Flyback Inductance Maximum Flyback Inductance Flyback Inductance Flyback Inductance Tolerance Flyback Core Flyback Core Code Flyback Core Cross Sectional Area Flyback Core Ungapped Core Effective Inductance Flyback Core Volume Flyback Bobbin
76 77 78 80 81 82 83 83 84 85 86 87 88 88 89 90 91 92 93	VOR LP_MIN LP_NOM LP_MAX LP_TOL Flyback Core and Bo CR_TYPE CR_PN AE LE AL VE BOBBINID BB_ORIENTATION AW BW MARGIN Flyback Winding Det	5.00 bbin Selection PQ20/20	Parame	80 691.72 728.13 764.54 5.00 PQ20/20 PQ20/20- 3F3 62.60 45.70 2650.00 2850.00 P-2036 H 36.00 7.00 0.00 	V µH µH % mm ² mm nH/turns ² mm ³ mm ² mm ² mm ² mm	Winding Minimum Flyback Inductance Nominal Flyback Inductance Maximum Flyback Inductance Flyback Inductance Tolerance Flyback Core Flyback Core Code Flyback Core Cross Sectional Area Flyback Core Ungapped Core Effective Inductance Flyback Core Volume Flyback Bobbin Flyback Bobbin Flyback Bobbin Flyback Bobbin Flyback Bobbin
76 77 78 79 80 81 82 83 84 85 86 87 88 87 88 89 90 91 92 93 94	VOR LP_MIN LP_NOM LP_MAX LP_TOL Flyback Core and Bo CR_TYPE CR_PN AE LE AL VE BOBBINID BB_ORIENTATION AW BW MARGIN Flyback Winding Det NP	5.00 bbin Selection PQ20/20	Parame	80 691.72 728.13 764.54 5.00 PQ20/20 PQ20/20- 3F3 62.60 45.70 2650.00 2850.00 P-2036 H 36.00 7.00 0.00 49.00	V µH µH % mm ² mm nH/turns ² mm ³ mm ² mm ² mm ² mm	Winding Minimum Flyback Inductance Nominal Flyback Inductance Maximum Flyback Inductance Flyback Inductance Tolerance Flyback Core Flyback Core Code Flyback Core Cross Sectional Area Flyback Core Ungapped Core Effective Inductance Flyback Core Volume Flyback Bobbin Flyback Mindow Area of Bobbin Flyback Bobbin Flyback Bobbin Flyback Mindow Area of Bobbin
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	VOR LP_MIN LP_NOM LP_NOM LP_TOL Flyback Core and Bo CR_TYPE CR_PN AE LE AL VE BOBBINID BB_ORIENTATION AW BW MARGIN Flyback Winding Det NP BP	5.00 bbin Selection PQ20/20	Parame	80 691.72 728.13 764.54 5.00 PQ20/20 PQ20/20- 3F3 62.60 45.70 2650.00 2850.00 P-2036 H 36.00 7.00 0.00 	V µH µH % mm ² mm nH/turns 2 mm ² mm mm ² mm ² mm Gauss	Winding Minimum Flyback Inductance Nominal Flyback Inductance Maximum Flyback Inductance Flyback Inductance Tolerance Flyback Core Flyback Core Code Flyback Core Cross Sectional Area Flyback Core Ungapped Core Effective Inductance Flyback Core Volume Flyback Bobbin Flyback Poak Flybin Flyback Bobbin Flyback Bobbin Flyback Bobbin Flyback Bobbin Flyback Poak Flybin Primary Turns Flyback Peak Flyback
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	VOR LP_MIN LP_NOM LP_MAX LP_TOL Flyback Core and Bo CR_TYPE CR_PN AE LE AL VE BOBBINID BB_ORIENTATION AW BW MARGIN Flyback Winding Det NP BP BM	5.00 bbin Selection PQ20/20	Parame	80 691.72 728.13 764.54 5.00 PQ20/20 PQ20/20- 3F3 62.60 45.70 2650.00 P-2036 H 36.00 7.00 0.00 	V µH µH % mm ² mm nH/turns 2 mm ² mm mm ² mm ² mm ² mm Gauss Gauss	Winding Minimum Flyback Inductance Nominal Flyback Inductance Maximum Flyback Inductance Flyback Inductance Tolerance Flyback Core Flyback Core Code Flyback Core Cross Sectional Area Flyback Core Ungapped Core Effective Inductance Flyback Bobbin Flyback Peak Flux Density Flyback Maximum Flux Density

	-				
100	L		2.00		Number of Flyback Layers
101	AWG		30.00		Primary Winding Wire AWG
102	OD		0.30	mm	Primary Winding Wire Output Diameter with Insulation
103	DIA		0.26	mm	Primary Winding Wire Output Diameter without Insulation
104	СМА		323.32	Circular Mils/A	Primary Winding Wire CMA
105	NB		8.00		Bias Turns
106	L_BIAS		1.00		Number of Flyback Bias Winding Layers
107	AWGpBias		36.00		Bias Wire AWG
108	NS	22	22		Secondary Turns
109	AWGS		26.00		Secondary Winding Wire AWG
110	ODS		0.41	mm	Secondary Winding Wire Output Diameter with Insulation
111	DIAS		0.71	mm	Secondary Winding Wire Output Diameter without Insulation
112	CMAS		215.03	Circular Mils/A	Secondary Winding Wire CMA
113	Primary Components	Selection			
114	Line Undervoltage			1	
115	BROWN_IN_REQUIRE D	88.00	88.00	v	Required AC RMS line voltage brown-in threshold
116	RLS		2.21	MOhm	Two Resistors of this Value in Series to the V- pin
117	BROWN_IN_ACTUAL		88.53	V	Actual AC RMS brown-in threshold
118	Line Overvoltage				
119	OVERVOLTAGE_LINE		369.26	V	Actual AC RMS line over-voltage threshold
120	Bias Voltage				
121	VBIAS		12.0	V	Rectified Bias Voltage
122	VF_BIASDIODE		0.70	V	Bias Winding Diode Forward Drop
123	VRRM_BIASDIODE		73.19	V	Bias diode reverse voltage
124	CBIAS		22.0	μF	Bias winding rectification capacitor
125	CBPP		0.47	μF	BPP pin capacitor
126	Bulk Capacitor Zener	Clamp			
127	Use_Clamp	Yes	Yes		Bulk Capacitor Clamp Needed? Yes, No or N/A
128	VZ1_V		200.00	V	Zener 1 Voltage Rating (In Series with Zener 2)
129	PZ1_W		0.80	W	Zener 1 Minimum Power Rating
130	VZ2_V		200.00	V	Zener 2 Voltage Rating
131	PZ2_W		0.80	W	Zener 2 Minimum Power Rating
132	RZ		4700.00	ohms	Resistor in series with Zener 1 and Zener 2
133	Secondary Componer				
134	Feedback Component	ts			
135	RFB_UPPER		102.00	kOhm	Upper feedback 1% resistor
136	RFB_LOWER		3.70	kOhm	Lower feedback 1% resistor
137	CFB_LOWER		330.0	pF	Lower feedback resistor decoupling at least 5V- rating capacitor
138	CBPS		2.2	μF	BPS pin capacitor
139	Secondary Auxiliary	Section - For VO	> 24V ONLY		
140	Sec Aux Diode				
141	VAUX	10.00	10.00	V	Rectified auxiliary voltage
142	VF_AUX		0.70	V	Auxiliary winding diode forward drop
143	VRRM_AUXDIODE		65.54	V	Auxiliary diode reverse voltage
144	CAUX		22.00	μF	Auxiliary winding rectification capacitor
145	NAUX_SEC		7.00		Secondary Aux Turns
146	L_AUX		1.00		Number of Flyback Aux Winding Layers
147	AWGSAUX		38		Secondary Aux Winding AWG
148	Output Parameters	1			
149	VOUT_ACTUAL		36.00	V	Actual Output Voltage
150	IOUT_ACTUAL	1	0.80	A	Actual Output Current
151	ISECRMS		1.16	A	Secondary RMS current for output
152	Output Components				

					-
153	VF		0.70	V	Output diode forward drop
154	VRRM		204.26	V	Output diode reverse voltage
155	COUT		178.49	μF	Output Capacitor - Capacitance
156	COUT_VOpercentRip		2.50	%	Output Capacitor Ripple % of VOUT
157	ICOUTrms		0.85	A	Output Capacitor Estimated Ripple Current
158	ESRmax		300.58	mohms	Output Capacitor Maximum Recommended ESR
159	Errors, Warnings, Inf	formation			
160	Information				Although the design has passed the user should validate functionality on the bench. Please check the variables listed.
					Flease check the variables listed.
161	Design Warnings		OVERVOLT AGE_LINE		Design variables whose values exceed electrical/datasheet specifications.

Notes: Row 161 – Actual line overvoltage protection is triggered below the absolute maximum V_{DS} rating of the LYTSwitch-6 IC.

10 **Performance Data**

All measurements were performed at room temperature.

10.1 Output Current Regulation

Set-up:	Open frame unit.
Load:	36 V 800 mA LED load.
Ambient Temperature:	25 ºC.
Soak Time:	60 seconds.

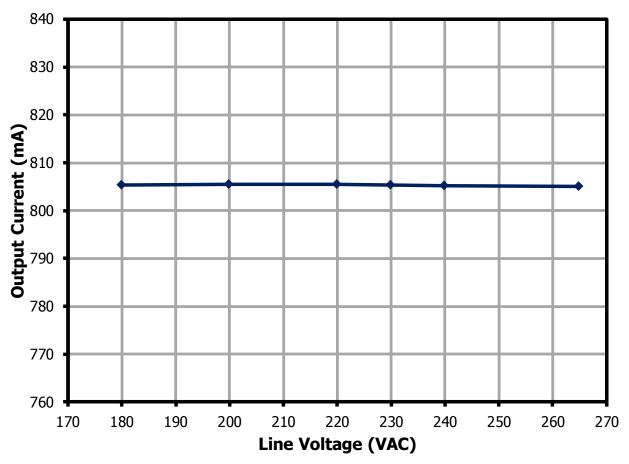
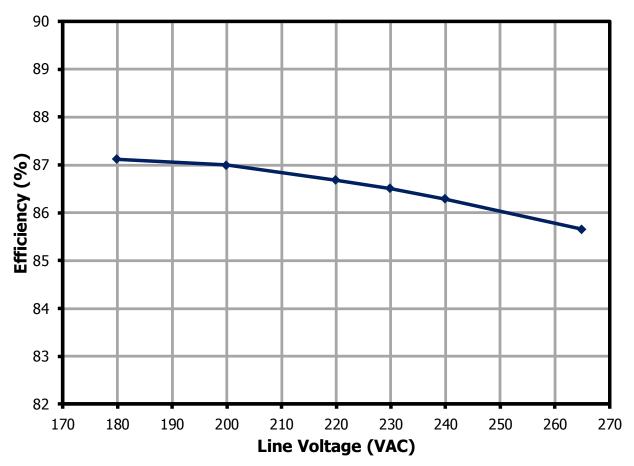



Figure 14 – Output Current Regulation vs. Input Line Voltage.

10.2 System Efficiency

Set-up:	Open frame unit.
Load:	36 V 800 mA LED load.
Ambient Temperature:	25 °C.
Soak Time:	60 seconds.

Figure 15 – Efficiency vs. Input Line Voltage.

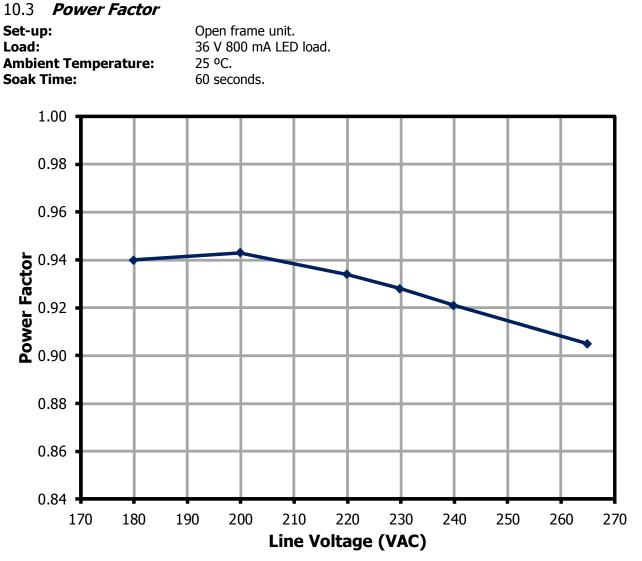
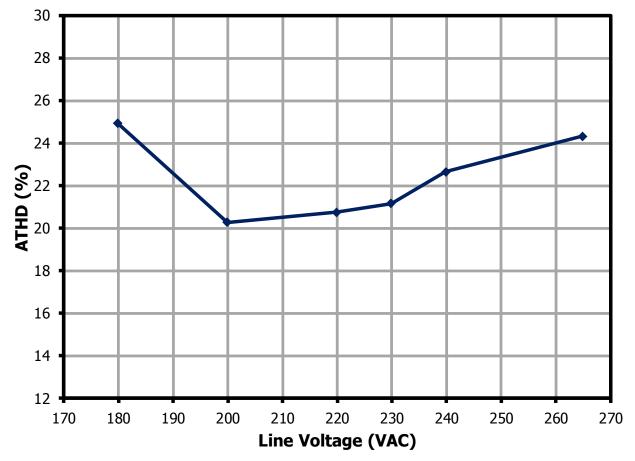



Figure 16 – Power Factor vs. Input Line Voltage.

10.4 **%ATHD**

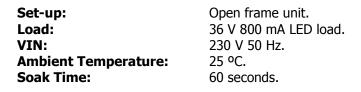

Set-up:	Open frame unit.
Load:	36 V 800 mA LED load.
Ambient Temperature:	25 °C.
Soak Time:	60 seconds.

Figure 17 – %ATHD vs. Input Line Voltage.

10.5 Individual Harmonics Content at Full Load

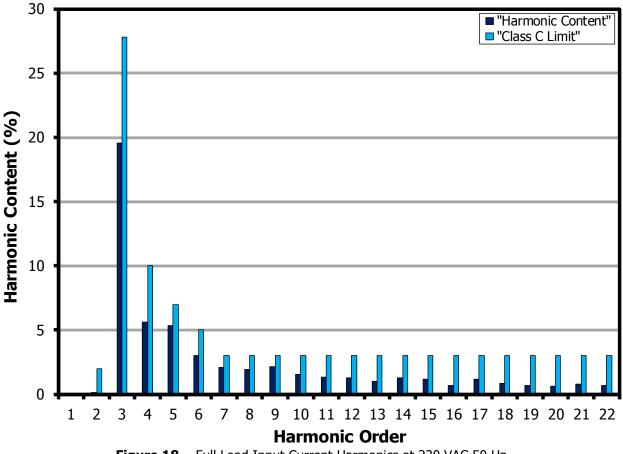


Figure 18 – Full Load Input Current Harmonics at 230 VAC 50 Hz.

10.6 No-Load Input Power

Set-up:	Open frame unit.
Load:	Open load.
Ambient Temperature:	25 °C.
Soak Time:	60 seconds.

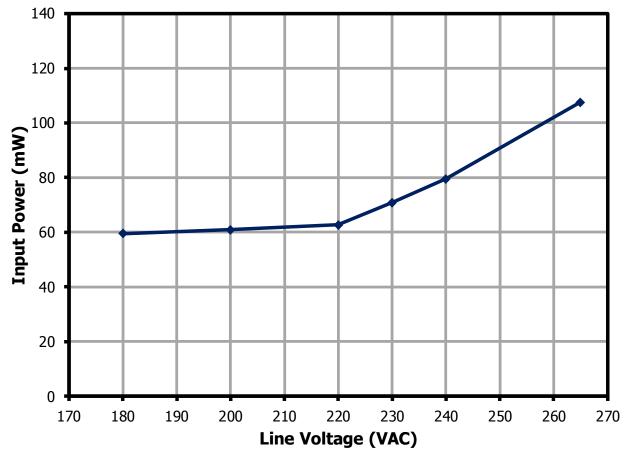
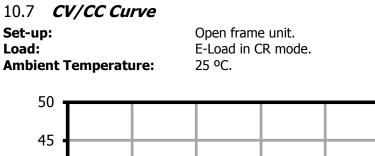



Figure 19 – No-Load Input Power vs. Input Line Voltage.

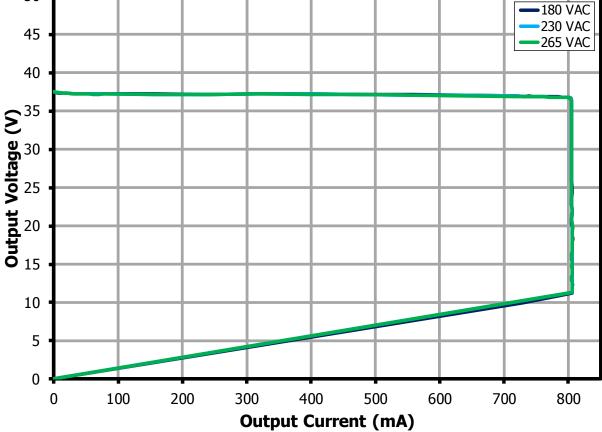


Figure 20 – CV/CC Curve for Non-Dimming Application.

10.8 Dimming Performance: 3-in-1 Dimming

Set-up:	Open Frame Unit.
Load:	36 V 800 mA LED Load.
Ambient Temperature:	25 °C.

10.8.1 Variable Supply Dimming

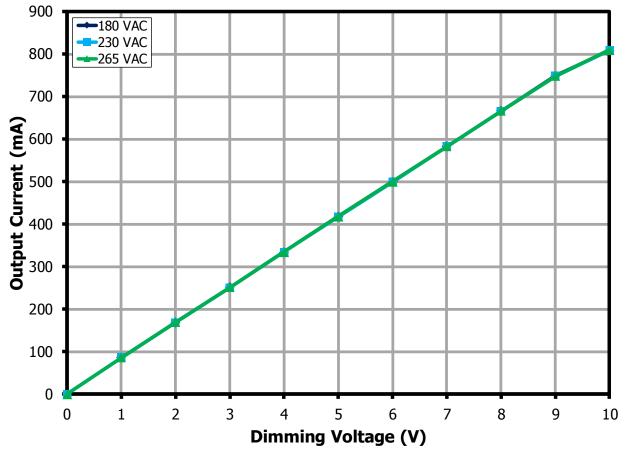


Figure 21 – Dimming Performance vs. Variable Supply (0-10 V).

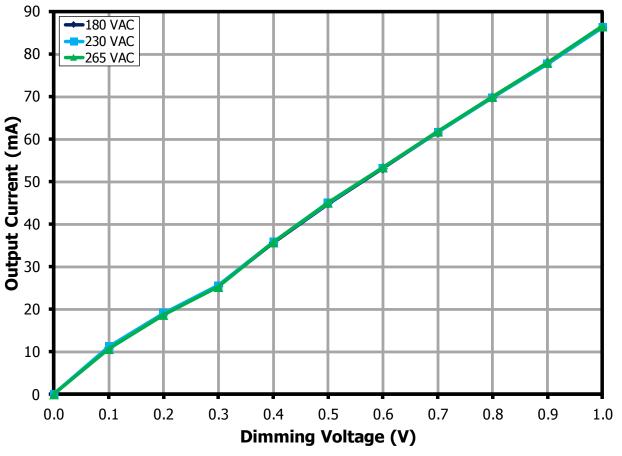
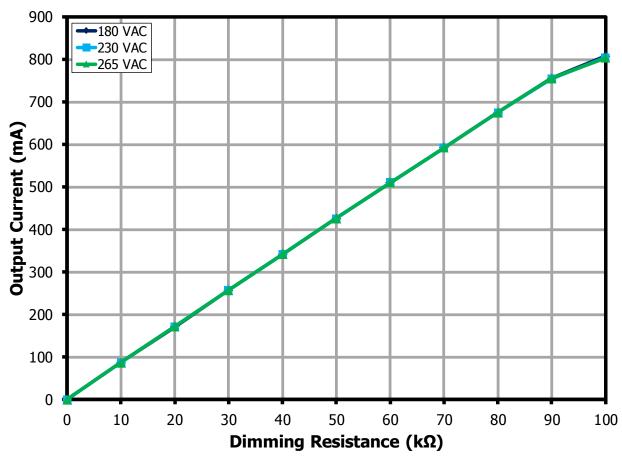



Figure 22 – Dimming Performance vs. Variable Supply (0-1 V).

10.8.2 Variable Resistor Dimming

Figure 23 – Dimming Performance vs. Variable Resistor (0-100 k Ω).

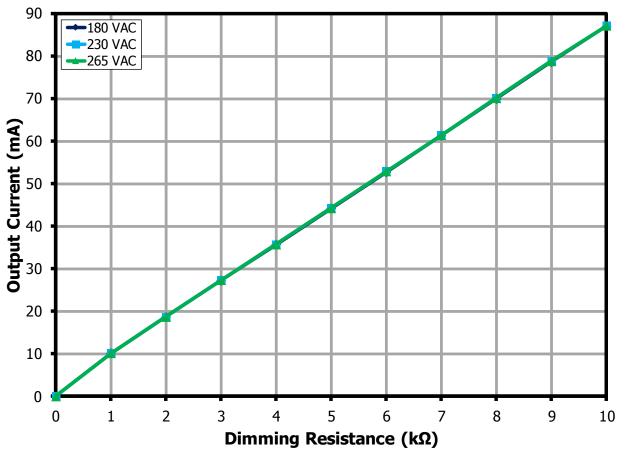
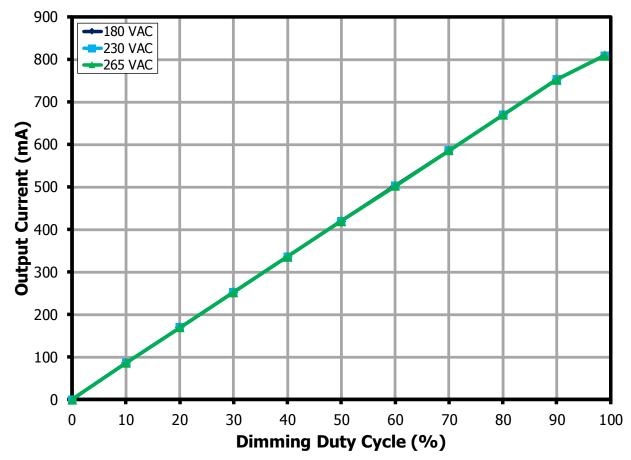



Figure 24 – Dimming Performance vs. Variable Resistor (0-10 kΩ).

10.8.3 Variable Duty PWM Dimming

Figure 25 – Dimming Performance vs. Variable PWM Duty Cycle (0-100%) at 300 Hz.

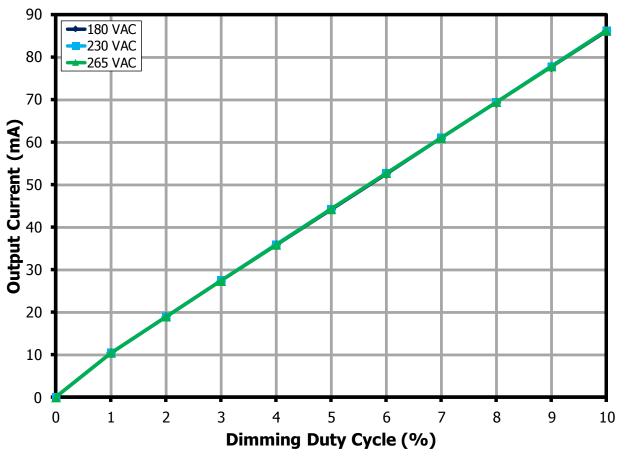


Figure 26 – Dimming Performance vs. Variable PWM Duty Cycle (0-10%) at 300 Hz.

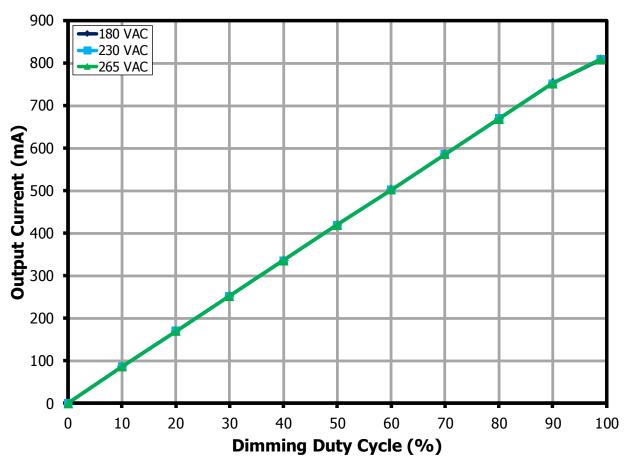


Figure 27 – Dimming Performance vs. Variable PWM Duty Cycle (0-100%) at 1500 Hz.

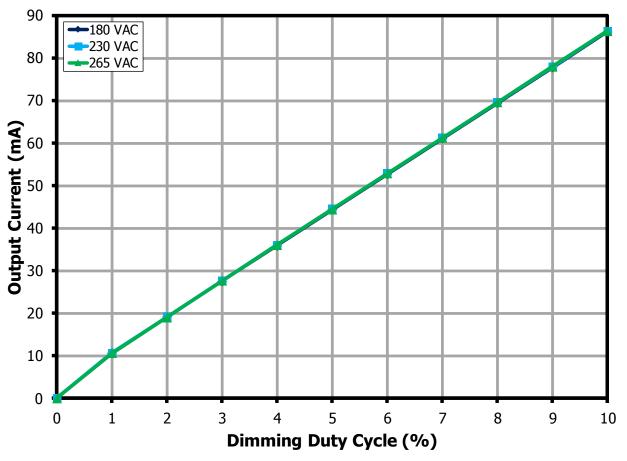


Figure 28 – Dimming Performance vs. Variable PWM Duty Cycle (0-10%) at 1500 Hz.

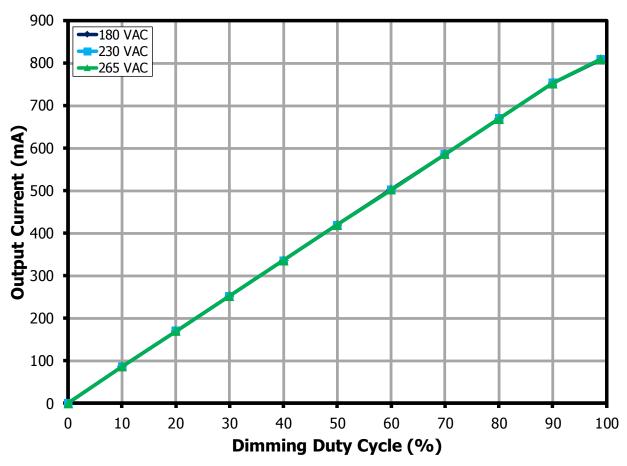


Figure 29 – Dimming Performance vs. Variable PWM Duty Cycle (0-100%) at 3000 Hz.

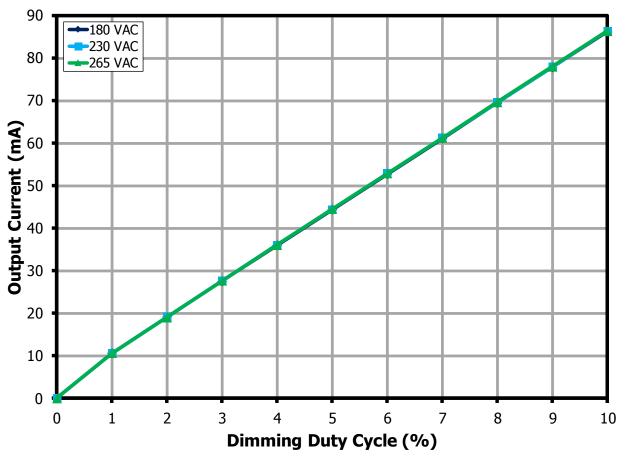


Figure 30 – Dimming Performance vs. Variable PWM Duty Cycle (0-10%) at 3000 Hz.

11 Test Data

11.1 Test Data at Full Load

Inp	Input Input Measur		Input Measurement				LED Lo	ad Measui	rement	Efficiency
VAC (V _{RMS})	Freq (Hz)	V _{IN} (V _{RMS})	I _{IN} (mA _{RMS})	P _{IN} (W)	PF	%ATHD	V _{OUT} (V _{DC})	I _{OUT} (mA _{DC})	Р _{оит} (W)	(%)
180	50	180	189.7	32.08	0.94	24.92	34.70	805.4	27.95	87.1
200	50	200	170.3	32.08	0.94	20.28	34.65	805.5	27.91	87.0
220	50	220	156.6	32.15	0.93	20.75	34.60	805.5	27.87	86.7
230	50	230	150.9	32.18	0.93	21.16	34.57	805.4	27.84	86.5
240	50	240	145.8	32.23	0.92	22.65	34.54	805.2	27.81	86.3
265	50	265	135.3	32.43	0.91	24.32	34.51	805.1	27.78	85.7

11.2 Test Data at No-Load

Input				
VAC (V _{RMS})	Freq (Hz)	V _{IN} (V _{RMS})	I _{IN} (mA _{RMS})	P _{IN} (mW)
180	50	180	13.7	59.53
200	50	200	14.0	60.97
220	50	220	14.4	62.72
230	50	230	15.0	70.92
240	50	240	15.2	79.60
265	50	265	15.7	107.53

V	Freq	I (mA)	Р	PF	%THD
230	50	150.97	32.166	0.927	21.895
nth Order	mA Content	% Content	Limit <25 W	Limit >25 W	Remarks
1	146.49				
2	0.2	0.137		2	pass
3	28.65	19.558	109.364	27.81	pass
5	8.25	5.632	61.115	10	pass
7	7.86	5.366	32.166	7	pass
9	4.41	3.01	16.083	5	pass
11	3.1	2.116	11.258	3	pass
13	2.83	1.932	9.526	3	pass
15	3.18	2.171	8.256	3	pass
17	2.29	1.563	7.285	3	pass
19	1.96	1.338	6.518	3	pass
21	1.84	1.256	5.897	3	pass
23	1.45	0.99	5.384	3	pass
25	1.86	1.27	4.954	3	pass
27	1.68	1.147	4.587	3	pass
29	0.97	0.662	4.27	3	pass
31	1.73	1.181	3.995	3	pass
33	1.23	0.84	3.753	3	pass
35	0.99	0.676	3.538	3	pass
37	0.92	0.628	3.347	3	pass
39	1.13	0.771	3.175	3	pass
41	0.98	0.669	3.02	3	pass

11.3 Individual Harmonic Content at 230 VAC 50 Hz and Full Load

01-Nov-18

12 Thermal Performance

12.1 Thermal Measurements at Ambient Room Temperature

Figure 31 – Test Set-up Picture - Open Frame.

Unit in open frame was placed inside the acrylic enclosure to prevent airflow that might affect the thermal measurements. Temperature was measured using T-type thermocouple.

Equipment used:

- 1. KEYSIGHT 6812B AC Power Source/Analyzer
- 2. Chroma 63110A DC Electronic Load Mainframe
- 3. FLIR E60 Thermal Camera
- 4. Yokogawa WT310E Digital Power Meter

Ref Des	Description	Temperature Reading (°C) At 180 VAC	Temperature Reading (°C) At 265 VAC
U4	LYTSwitch-6 IC	84.8	108.4
D10	Output Diode	94.6	109
T1	PFC Inductor	64.6	71.1
T2	DCDC Transformer Primary	67.8	86.8
D1	PFC Diode	57.8	58.2
BR1	Bridge Diode	48.2	43.8
U11	Linear Regulator	65.6	66.4
AMBIENT		25.1	24.9

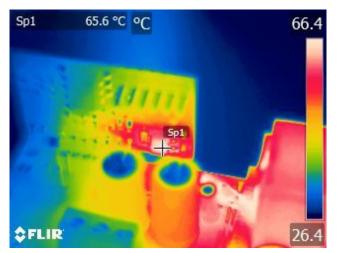


Figure 32 – 180 VAC 50 Hz, Full Load. Linear Regulator (U11).

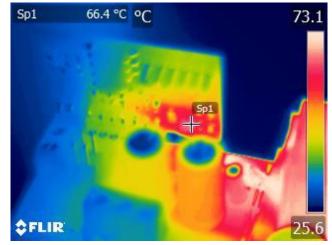


Figure 33 – 265 VAC 50 Hz, Full Load. Linear Regulator (U11).

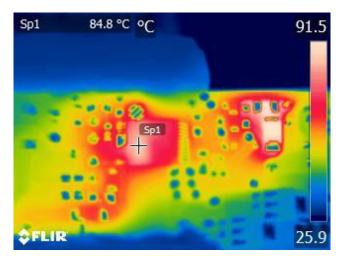


Figure 34 – 180 VAC 50 Hz, Full Load LYTSwitch-6 IC (U4).

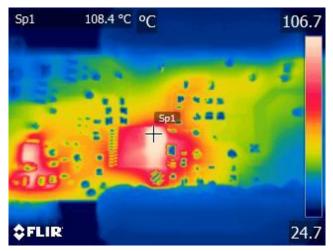


Figure 35 – 265 VAC 50 Hz, Full Load LYTSwitch-6 IC (U4).

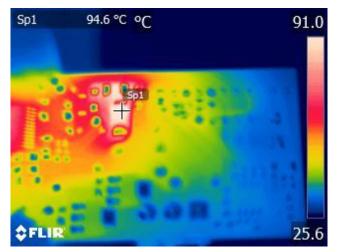


Figure 36 – 180 VAC 50 Hz, Full Load. Output Diode (D10).

Figure 37 – 265 VAC 50 Hz, Full Load. Output Diode (D10).

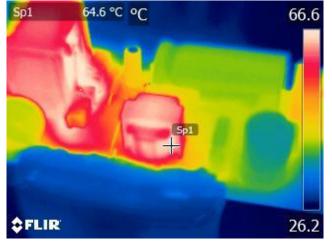


Figure 38 – 180 VAC 50 Hz, Full Load. PFC Inductor (T1).

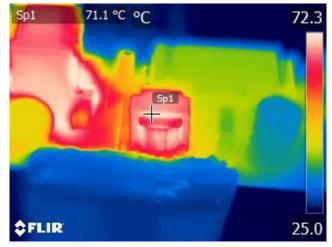


Figure 39 – 265 VAC 50 Hz, Full Load. PFC Inductor (T1).

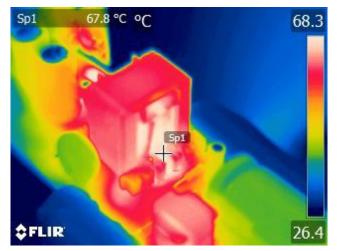


Figure 40 – 180 VAC 50 Hz, Full Load. DCDC Transformer Primary (T2).

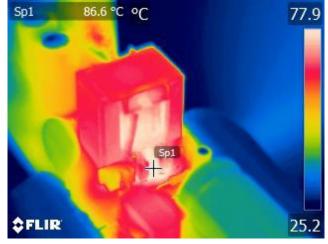


Figure 41 – 265 VAC 50 Hz, Full Load. DCDC Transformer Primary (T2).

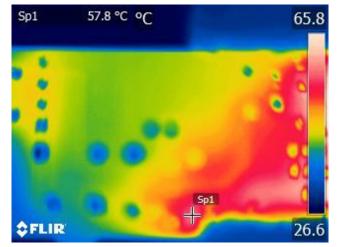


Figure 42 – 180 VAC 50 Hz, Full Load. PFC Diode (D1).

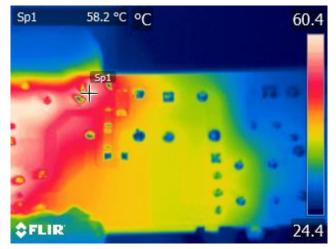


Figure 43 – 265 VAC 50 Hz, Full Load. PFC Diode (D1).

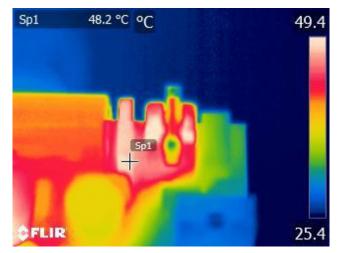


Figure 44 – 180 VAC 50 Hz, Full Load. Bridge Diode (BR1).

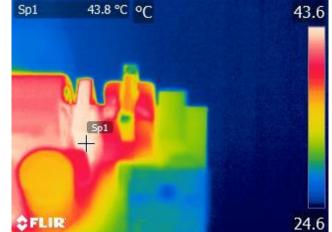


Figure 45 – 265 VAC 50 Hz, Full Load. Bridge Diode (BR1).

12.2 *Thermal Performance at Ambient Room Temperature with Unit Inside Casing*

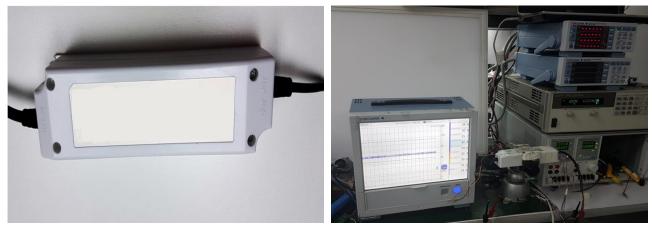
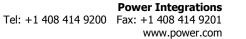



Figure 46 – Test Set-up Picture – Cased Unit.

Cased unit was placed inside the enclosure to prevent airflow that may affect the thermal measurements. Ambient temperature measured at room temperature. Temperature was measured using T-type thermocouple. Soak time at full load is more than 1 hour.

Equipment used:

- 1. KEYSIGHT 6812B AC Power Source/Analyzer
- 2. Chroma 6314A DC Electronic Load Mainframe and Chroma 63110A DC Electronic Load
- 3. Yokogawa Data Logger
- 4. Yokogawa WT310E Digital Power Meter

Ref Des	Description	Temperature Reading (°C)
U4	LYTSwitch-6 IC	114.2
D10	Output Diode	93.4
T1	PFC Inductor	77.1
T2	DCDC Transformer Primary	79.5
D1	PFC Diode	75.1
D17	PFC Diode	56.3
BR1	Bridge Diode	51.1
AMBIENT		25.7

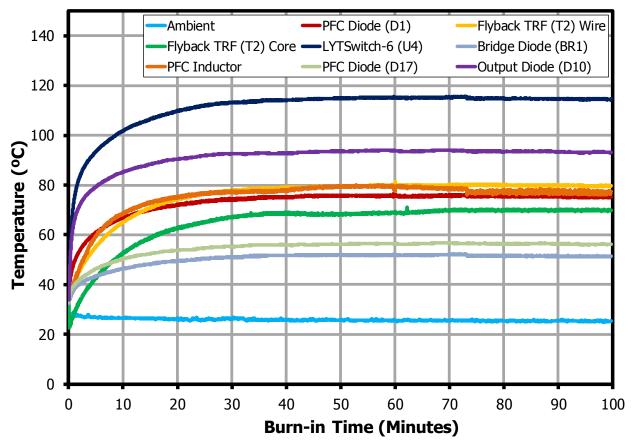


Figure 47 – Component Temperature at Ambient Room Temperature - Cased Unit. 230 VAC 50 Hz Input.

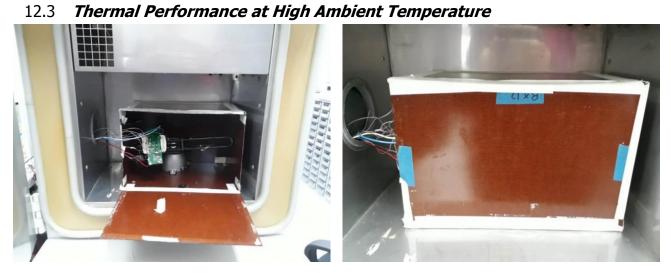


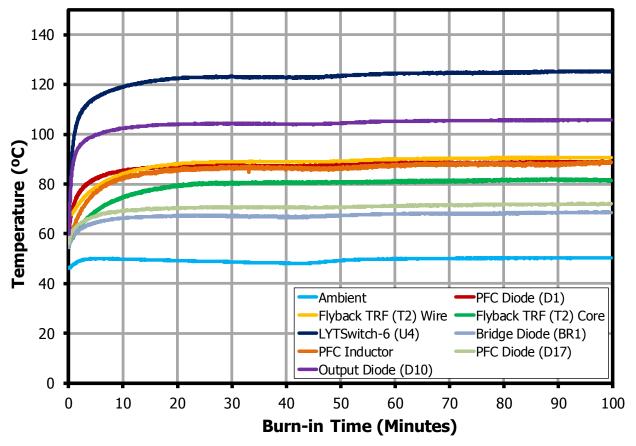
Figure 48 – Test Set-up Picture Thermal at 50 °C Ambient - Open Frame.

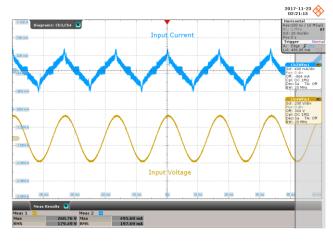
Open frame unit was placed inside the enclosure to prevent airflow that may affect the thermal measurements. Ambient temperature inside the enclosure is set at 50 °C. Temperature was measured using T-type thermocouple. Soak time at full load is more than 1 hour.

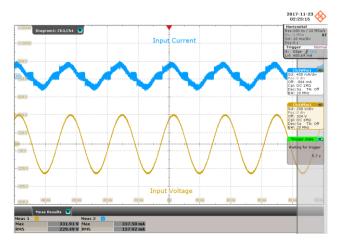
Equipment used:

- 1. KEYSIGHT 6812B AC Power Source/Analyzer
- 2. Chroma 6314A DC Electronic Load Mainframe and Chroma 63110A DC Electronic Load
- 3. Yokogawa Data Logger
- 4. Yokogawa WT310E Digital Power Meter
- 5. SPX Tenney TUJR Thermal Chamber

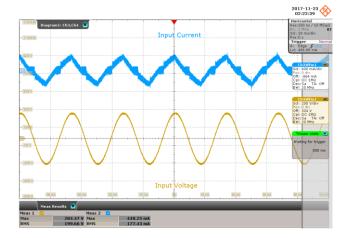
Ref Des	Description	Temperature Reading (°C)
U4	LYTSwitch-6 IC	125.3
D10	Output Diode	105.7
T1	PFC Inductor	89.1
T2	DCDC Transformer Primary	90.7
D1	PFC Diode	88.9
D17	PFC Diode	72.0
BR1	Bridge Diode	68.6
AMBIENT		50.2

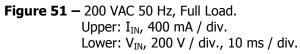


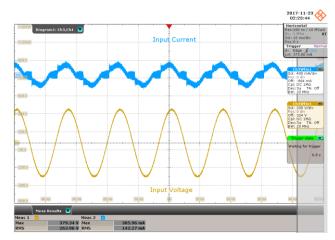

Figure 49 – Component Temperature at 50 °C Ambient - Open Frame. 230 VAC 50 Hz Input.


13 Waveforms

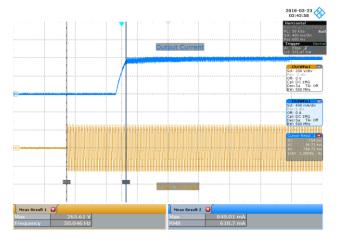
Waveforms were taken at room temperature (25 °C).

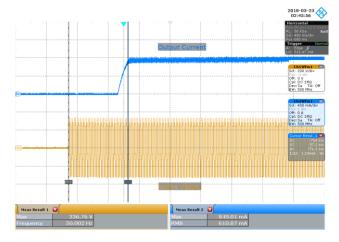

13.1 Input Voltage and Input Current at Full Load




 $\label{eq:Figure 50-180 VAC 50 Hz, Full Load.} \\ Upper: I_{IN}, 400 \text{ mA / div.} \\ \text{Lower: } V_{IN}, 200 \text{ V / div.}, 10 \text{ ms / div.} \\ \end{aligned}$

 $\label{eq:Figure 52-230} \begin{array}{l} \mbox{VAC 50 Hz, Full Load.} \\ \mbox{Upper: } I_{\rm IN}, \mbox{ 400 mA / div.} \\ \mbox{Lower: } V_{\rm IN}, \mbox{ 200 V / div., 10 ms / div.} \end{array}$

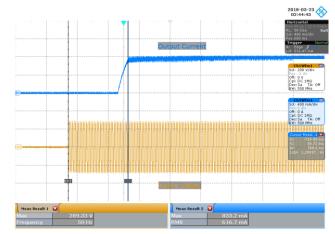
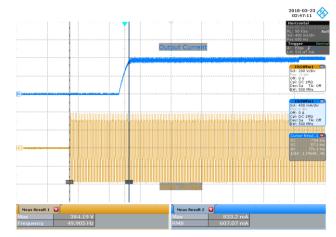


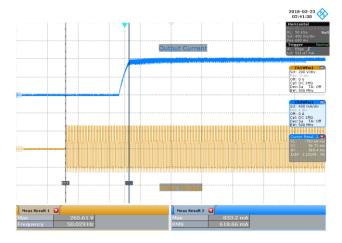

 $\label{eq:Figure 53-265} \begin{array}{l} \mbox{Figure 53-265 VAC 50 Hz, Full Load.} \\ \mbox{Upper: } I_{IN} \mbox{ 400 mA / div.} \\ \mbox{Lower: } V_{IN} \mbox{ 200 V / div., 10 ms / div.} \end{array}$

13.2 Start-up Profile at Full Load (DALI Disabled)

 $\label{eq:Figure 54-180} \begin{array}{l} \text{Figure 54-180 VAC 50 Hz, Full Load Start-up.} \\ & \text{Upper: } I_{\text{OUT}}, \ 400 \ \text{mA} \ / \ \text{div.} \\ & \text{Lower: } V_{\text{IN}}, \ 200 \ \text{V} \ / \ \text{div.}, \ 400 \ \text{ms} \ / \ \text{div.} \\ & \text{Turn On Time: } \ 770 \ \text{ms.} \end{array}$

 $\label{eq:Figure 56-230} \begin{array}{l} \mathsf{Fagure 56-230} \ \mathsf{VAC 50} \ \mathsf{Hz}, \ \mathsf{Full Load Start-up.} \\ \mathsf{Upper: } I_{\mathsf{OUT}}, \ 400 \ \mathsf{mA} \ / \ \mathsf{div.} \\ \mathsf{Lower: } V_{\mathsf{IN}}, \ 200 \ \mathsf{V} \ / \ \mathsf{div.}, \ 400 \ \mathsf{ms} \ / \ \mathsf{div.} \\ \mathsf{Turn On Time: } 770 \ \mathsf{ms.} \end{array}$


Figure 55 – 200 VAC 50 Hz, Full Load Start-up. Upper: I_{OUT} , 400 mA / div. Lower: V_{IN} , 200 V / div., 400 ms / div. Turn On Time: 770 ms.

 $\label{eq:Figure 57-265} \begin{array}{l} \mbox{Figure 57-265 VAC 50 Hz, Full Load Start-up.} \\ \mbox{Upper: } I_{OUT}, \mbox{ 400 mA / div.} \\ \mbox{Lower: } V_{IN}, \mbox{ 200 V / div., 400 ms / div.} \\ \mbox{Turn On Time: 770 ms.} \end{array}$

13.3 Start-up Profile Full Load (DALI Enable)

 $\label{eq:Figure 58-180 VAC 50 Hz, Full Load Start-up.} \\ Upper: I_{OUT}, 400 mA / div. \\ Lower: V_{IN}, 200 V / div., 400 ms / div. \\ Turn On Time: 820 ms. \\ \end{array}$

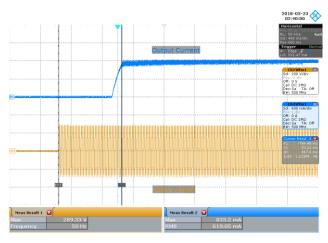
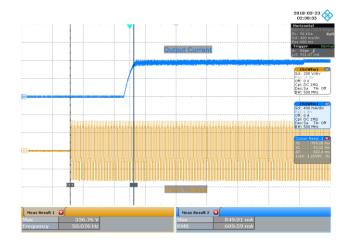
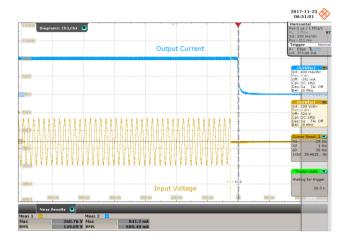
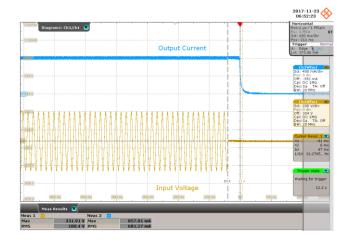
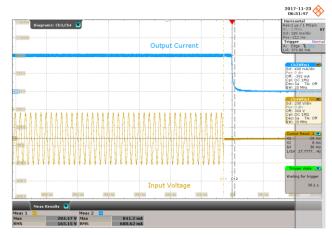
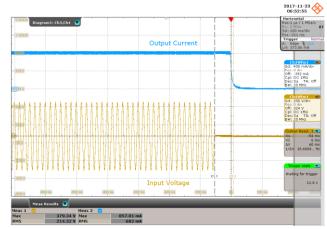



Figure 59 – 200 VAC 50 Hz, Full Load Start-up. Upper: I_{OUT} , 400 mA / div. Lower: V_{IN} , 200 V / div., 400 ms / div. Turn On Time: 820 ms.

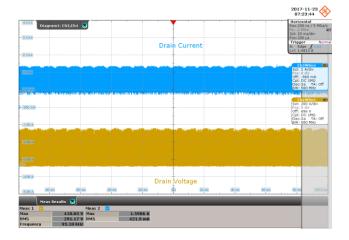

 $\label{eq:Figure 60-230} \begin{array}{l} \text{Figure 60-230 VAC 50 Hz, Full Load Start-up.} \\ & \text{Upper: } I_{\text{OUT}}, \ 400 \ \text{mA} \ / \ \text{div.} \\ & \text{Lower: } V_{\text{IN}}, \ 200 \ \text{V} \ / \ \text{div.}, \ 400 \ \text{ms} \ / \ \text{div.} \\ & \text{Turn On Time: } 820 \ \text{ms.} \end{array}$


Figure 61 – 265 VAC 50 Hz, Full Load Start-up. Upper: I_{OUT} , 400 mA / div. Lower: V_{IN} , 200 V / div., 400 ms / div. Turn On Time: 820 ms.

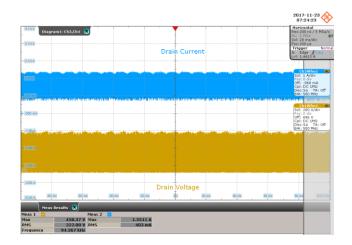

13.4 Turn-Off Profile Full Load


 $\label{eq:Figure 62-180 VAC 50 Hz, Full Load, Output Fall. Upper: I_{OUT}, 400 mA / div. \\ Lower: V_{IN}, 200 V / div., 100 ms / div. \\ Turn Off Time: 26 ms. \\ \end{tabular}$

 $\label{eq:Figure 64-230 VAC 50 Hz, Full Load, Output Fall. Upper: I_{OUT}, 400 mA / div. \\ Lower: V_{IN}, 200 V / div., 100 ms / div. \\ Turn Off Time: 47 ms. \\ \end{tabular}$


 $\label{eq:Figure 63-200 VAC 50 Hz, Full Load, Output Fall. Upper: I_{OUT}, 400 mA / div. \\ Lower: V_{IN}, 200 V / div., 100 ms / div. \\ Turn Off Time: 36 ms. \\ \end{tabular}$

 $\label{eq:Figure 65-265} \begin{array}{l} \mbox{Figure 65-265 VAC 50 Hz, Full Load, Output Fall.} \\ \mbox{Upper: } I_{\rm OUT}, \mbox{ 400 mA / div.} \\ \mbox{Lower: } V_{\rm IN}, \mbox{ 200 V / div., 100 ms / div.} \\ \mbox{Turn Off Time: 60 ms.} \end{array}$

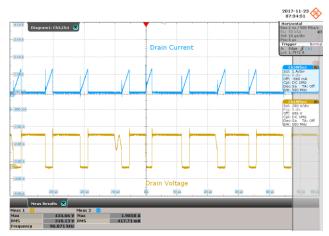


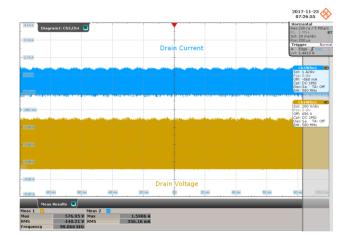
13.5 LYTSwitch-6 Drain Voltage and Current Waveforms at Normal Operation

 $\label{eq:Figure 66-180 VAC 50 Hz, Full Load Normal.} Upper: I_{DRAIN}, 1 \text{ A / div.} \\ \text{Lower: } V_{DRAIN}, 200 \text{ V / div.}, 20 \text{ ms / div.} \\ \end{aligned}$

 $\label{eq:Figure 68-200 VAC 50 Hz, Full Load Normal.} Upper: I_{DRAIN}, 1 \text{ A / div.} \\ \text{Lower: } V_{DRAIN}, 200 \text{ V / div.}, 20 \text{ ms / div.} \\ \end{aligned}$

Figure 67 – 180 VAC 50 Hz, Full Load Normal. Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN} , 200 V / div., 10 μ s / div.




Figure 69 – 200 VAC 50 Hz, Full Load Normal. Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN} , 200 V / div., 10 μ s / div.

 $\begin{array}{l} \textbf{Figure 70-230 VAC 50 Hz, Full Load Normal.} \\ \textbf{Upper: } I_{\text{DRAIN}}\text{, 1 A / div.} \\ \textbf{Lower: } V_{\text{DRAIN}}\text{, 200 V / div., 20 ms / div.} \end{array}$

 $\label{eq:Figure 72 - 265 VAC 50 Hz, Full Load Normal. \\ Upper: I_{DRAIN}, 1 A / div. \\ Lower: V_{DRAIN}, 200 V / div., 20 ms / div. \\ \end{array}$

Figure 71 – 230 VAC 50 Hz, Full Load Normal. Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN}, 200 V / div., 10 µs / div.

Figure 73 – 265 VAC 50 Hz, Full Load Normal. Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN}, 200 V / div., 10 µs / div.

13.6 LYTSwitch-6 Drain Voltage and Current at Full Load Start-up

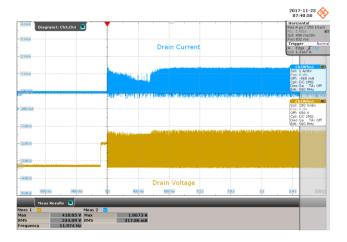
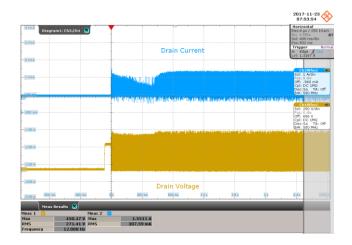



Figure 74 – 180 VAC 50 Hz, Full Load Start-up. Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN} , 200 V / div., 400 ms / div.

 $\label{eq:Figure 76-200} \begin{array}{l} \mbox{VAC 50 Hz, Full Load Start-up.} \\ \mbox{Upper: } I_{DRAIN}, 1 \mbox{ A / div.} \\ \mbox{Lower: } V_{DRAIN}, 200 \mbox{ V / div.}, 400 \mbox{ ms / div.} \end{array}$

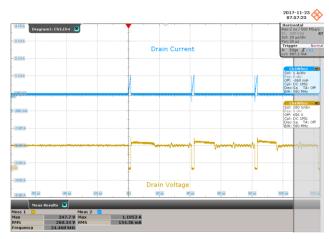


Figure 75 – 180 VAC 50 Hz, Full Load Start-up. Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN} , 200 V / div., 20 μ s / div.

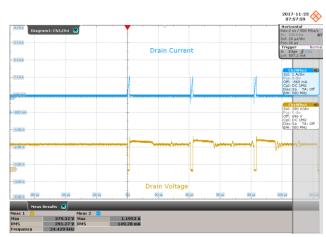
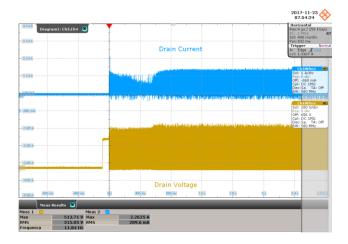
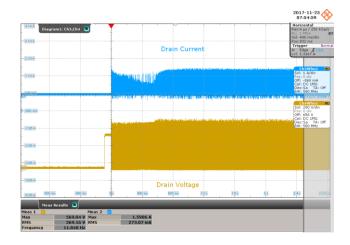




Figure 77 – 200 VAC 50 Hz, Full Load Start-up. Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN} , 200 V / div., 20 μ s / div.

 $\label{eq:Figure 78-230} \begin{array}{l} \mbox{VAC 50 Hz, Full Load Start-up.} \\ \mbox{Upper: } I_{DRAIN}, 1 \mbox{ A / div.} \\ \mbox{Lower: } V_{DRAIN}, 200 \mbox{ V / div.}, 400 \mbox{ ms / div.} \end{array}$

 $\label{eq:Figure 80-265 VAC 50 Hz, Full Load Start-up. \\ Upper: I_{DRAIN}, 1 \text{ A / div.} \\ \text{Lower: V}_{DRAIN}, 200 \text{ V / div., 400 ms / div.} \\ \end{aligned}$

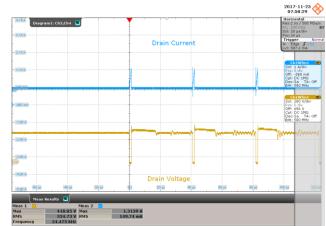


Figure 79 – 230 VAC 50 Hz, Full Load Start-up. Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN}, 200 V / div., 20 µs / div.

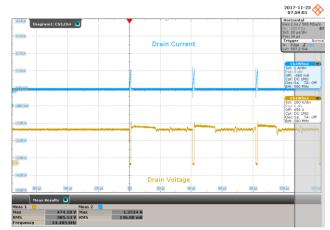


Figure 81 – 265 VAC 50 Hz, Full Load Start-up. Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN}, 200 V / div., 20 µs / div.

13.7 LYTSwitch-6 Drain Voltage and Current during Output Short-Circuit

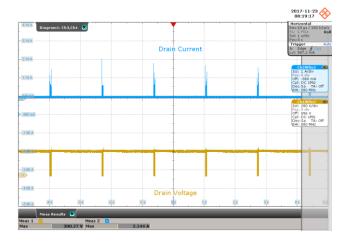


Figure 82 – 180 VAC 50 Hz, Output Shorted. Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN} , 200 V / div., 1 s / div. P_{IN} Average: 176 mW.

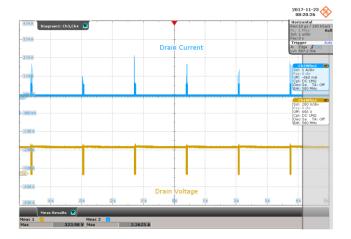


Figure 84 – 200 VAC 50 Hz, Output Shorted. Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN} , 200 V / div., 1 s / div. P_{IN} Average: 191 mW.

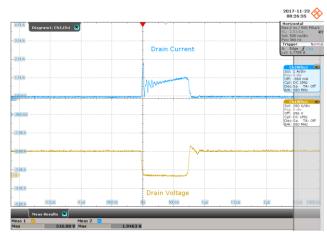
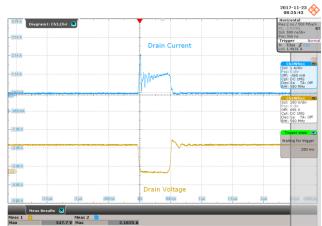



Figure 83 – 180 VAC 50 Hz, Output Shorted. Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN} , 200 V / div., 500 ns / div.

 $\label{eq:Figure 85-200 VAC 50 Hz, Output Shorted.} \\ Upper: I_{DRAIN}, 1 \text{ A / div.} \\ Lower: V_{DRAIN}, 200 \text{ V / div.}, 500 \text{ ns / div.} \\ \end{aligned}$

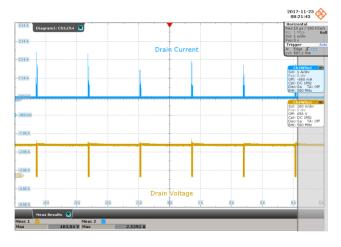


Figure 86 – 230 VAC 50 Hz, Output Shorted. Upper: I_{DRAIN} , 1 A / div. Lower: V_{DRAIN} , 200 V / div., 1 s / div. P_{IN} Average: 230 mW.

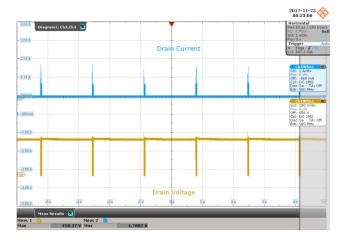
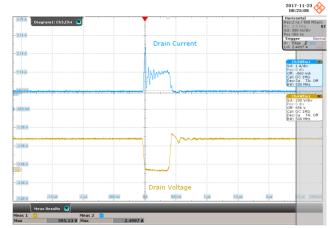
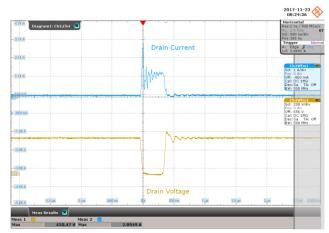




Figure 88 – 265 VAC 50 Hz, Output Shorted Upper: I_{DRAIN}, 1 A / div. Lower: V_{DRAIN}, 200 V / div., 1 s / div. P_{IN} Average: 243 mW.


 $\label{eq:Figure 87-230} \begin{array}{l} \mathsf{Figure 87-230} \ \mathsf{VAC} \ \mathsf{50} \ \mathsf{Hz}, \ \mathsf{Output} \ \mathsf{Shorted}. \\ \mathsf{Upper:} \ \mathsf{I}_{\mathsf{DRAIN}}, \ \mathsf{1} \ \mathsf{A} \ / \ \mathsf{div}. \\ \mathsf{Lower:} \ \mathsf{V}_{\mathsf{DRAIN}}, \ \mathsf{200} \ \mathsf{V} \ / \ \mathsf{div}., \ \mathsf{500} \ \mathsf{ns} \ / \ \mathsf{div}. \end{array}$

 $\label{eq:Figure 89-265 VAC 50 Hz, Output Shorted.} \\ Upper: I_{DRAIN}, 1 \text{ A / div.} \\ Lower: V_{DRAIN}, 200 \text{ V / div.}, 500 \text{ ns / div.} \\ \end{aligned}$

13.8 **PFC Diode Voltage and Current at Normal Operation**

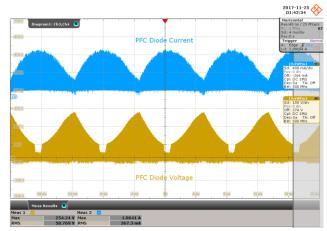


Figure 90 – 180 VAC 50 Hz, 580 mA LED Load. Upper: 400 mA / div. Lower: 100 V / div. Horizontal: 4 ms / div.

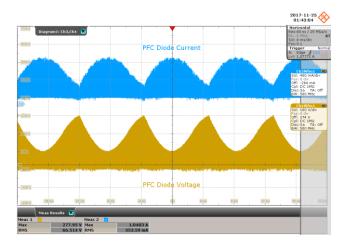
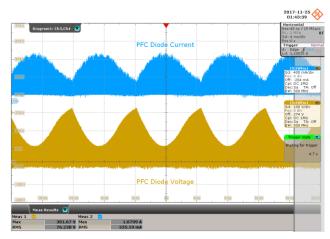



Figure 92 – 230 VAC 50 Hz, 580 mA LED Load. Upper: 400 mA / div. Lower: 100 V / div. Horizontal: 4 ms / div.

Figure 91 – 200 VAC 50 Hz, 580 mA LED Load. Upper: 400 mA / div. Lower: 100 V / div. Horizontal: 4 ms / div.

Figure 93 – 265 VAC 50 Hz, 580 mA LED Load. Upper: 400 mA / div. Lower: 100 V / div. Horizontal: 4 ms / div.

13.9 *PFC Diode Voltage and Current at Start-up Full Load*

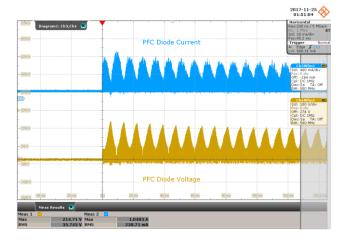


Figure 94 – 180 VAC 50 Hz, 800 mA LED Load. Upper: 400 mA / div. Lower: 100 V / div. Horizontal: 20 ms / div.

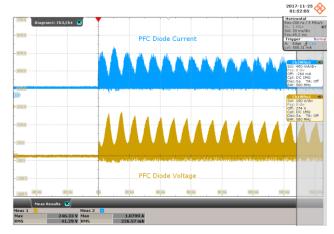


Figure 96 – 230 VAC 50 Hz, 800 mA LED Load. Upper: 400 mA / div. Lower: 100 V / div. Horizontal: 20 ms / div.

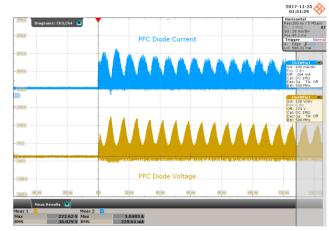


Figure 95 – 200 VAC 50 Hz, 800 mA LED Load. Upper: 400 mA / div. Lower: 100 V / div. Horizontal: 20 ms / div.

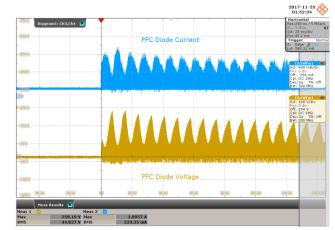


Figure 97 – 265 VAC 50 Hz, 800 mA LED Load. Upper: 400 mA / div. Lower: 100 V / div. Horizontal: 20 ms / div.

13.10 Output Current Ripple

13.10.1 Equipment Used

- 1. Rohde & Schwarz RTO1004 Oscilloscope
- 2. Rohde & Schwarz RT-ZC20B Current Probe
- 3. 36 V LED Load

13.10.2 Ripple Ratio and Flicker % Measurement

V _{IN}	I _{OUT(MAX)}	I _{OUT(MIN)}	I _{MEAN}	Ripple Ratio	% Flicker
(VAC)	(mA)	(mA)	(mA)	$(I_{RP}-P/I_{MEAN})$	100 x ($I_{RP}P / I_{OUT(MAX)} + I_{OUT(MIN)}$)
180	826.3	786.8	802.9	0.05	2.45
200	830.3	782.9	805.4	0.06	2.94
230	830.3	782.9	803.4	0.06	2.94
265	830.3	782.9	803.4	0.06	2.94

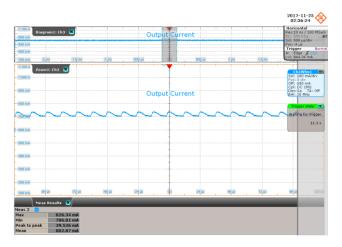
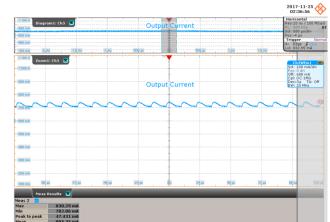
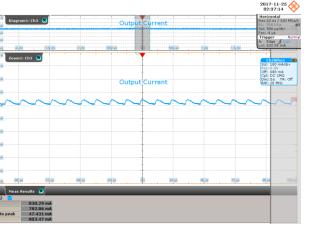
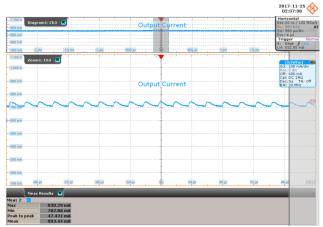


Figure 98 – 180 VAC 50 Hz, 800 mA LED Load.

20 MHz Bandwidth.


Figure 99 – 200 VAC 50 Hz, 800 mA LED Load. 20 MHz Bandwidth. I_{OUT} , 100 mA / div., 500 μ s / div. Ripple Current: 47.431 mA_{PK-PK}.

 I_{OUT} , 100 mA / div., 500 μ s / div.

Ripple Current: 39.526 mA_{PK-PK}.

Figure 100 – 230 VAC 50 Hz, 800 mA LED Load. 20 MHz Bandwidth. I_{OUT} , 100 mA / div., 500 μ s / div. Ripple Current: 47.431 mA_{PK-PK}.

Figure 101 – 265 VAC 50 Hz, 800 mA LED Load. 20 MHz Bandwidth. I_{OUT}, 100 mA / div., 500 μs / div. Ripple Current: 47.431 mA_{PK-PK}.

14 Conducted EMI

14.1 *Test Set-up*

14.1.1 Equipment and Load Used

- 1. Rohde and Schwarz ENV216 two line V-network
- 2. Rohde and Schwarz ESRP EMI test receiver
- 3. Hioki 3332 power hitester
- 4. Chroma Measurement Test Fixture model A662003
- 5. 36 V LED Load
- 6. HOSSONI TDGC2 VARIAC set at 230 VAC 50 Hz

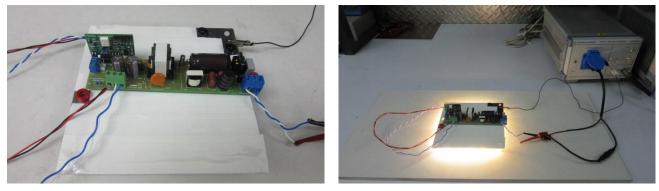
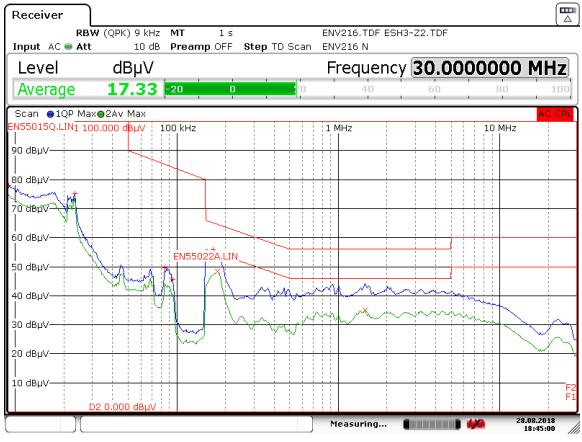



Figure 102 – Conducted EMI Test Set-up.

14.2 *EMI Test Result*

14.2.1 Non Earthed Conducted EMI

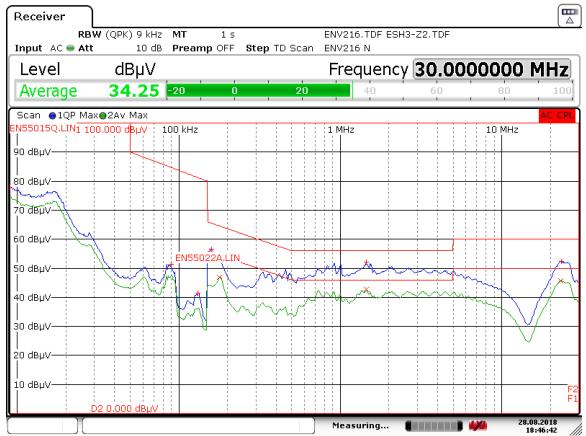

Date: 28.AUG.2018 18:45:00

Figure 103 - Conducted EMI QP Scan at Full Load, Non Earthed, 230 VAC 50 Hz and EN55015 B Limits.

Trace1: EN55015	Q.LIN	Trace2: EN55022A.LIN			
Trace/Detector	Frequency	Level dBµV	DeltaLimit		
2 Average	179.2500 kHz	48.29 L1	-6.23 dB		
1 Quasi Peak	168.0000 kHz	55.79 L1	-9.27 dB		
2 Average	1.4618 MHz	35.05 L1	-10.95 dB		
1 Quasi Peak	9.1000 kHz	77.90 N	-32.10 dB		
1 Quasi Peak	23.3000 kHz	75.29 N	-34.71 dB		
1 Quasi Peak	84.3500 kHz	49.69 L1	-35.55 dB		
1 Quasi Peak	94.5000 kHz	45.63 L1	-38.58 dB		

Figure 104 – Conducted EMI Data at 230 VAC 50 Hz, Full Load Non Earthed.

14.2.2 Earthed Conducted EMI

Date: 28.AUG.2018 18:46:43

Trace1: EN55015	Q.LIN	Trace2: EN55022A.LIN		
Trace/Detector	Frequency	Level dBµV	DeltaLimit	
2 Average	1.4460 MHz	42.78 L1	-3.22 dB	
1 Quasi Peak	1.4438 MHz	52.10 L1	-3.90 dB	
2 Average	23.0915 MHz	45.74 L1	-4.26 dB	
2 Average	179.2500 kHz	46.87 L1	-7.65 dB	
1 Quasi Peak	23.3930 MHz	52.30 L1	-7.70 dB	
1 Quasi Peak	159.0000 kHz	56.52 L1	-9.00 dB	
1 Quasi Peak	9.0000 kHz	77.83 N	-32.17 dB	
1 Quasi Peak	89.4500 kHz	51.37 N	-33.34 dB	
1 Quasi Peak	130.8500 kHz	41.46 N	-39.78 dB	

Figure 106 – Conducted EMI Data at 230 VAC 50 Hz, Full Load Earthed.

15 Appendix

15.1 DALI and CCT Interface Circuit

In any dimming system, the LED drivers and controllers must be able to speak the same language. For digital dimming systems, this language is an open standard such as the Digital Addressable Lighting Interface (DALI) protocol. DALI is a two-way digital protocol which consist a set of commands to and from LED drivers or ballasts within a defined data structures and specified electrical parameters.

Correlated color temperature (CCT) describes the color appearance of a white LED. CCT allows the user to select between three color temperatures: neutral white, cool white and warm white. At power-up, the default LED color is neutral white. To change the color to cool white, the user toggles the AC with a 1 second turn-off duration. By toggling the AC, the LED color is changed.

This daughterboard is capable of providing DALI 1.0 with CCT toggle functionality. The rest of the appendix details the circuit description, schematic and PCB layout, board level testing and set-up procedures.

For the software, use "*DER-754_DALI_CCT_PIC16F18326.hex"* to program the microcontroller via J5 header.

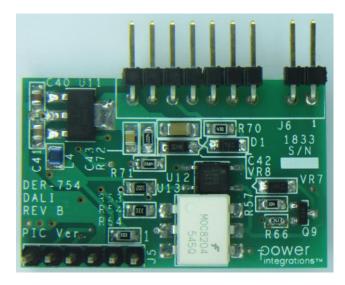


Figure 107 – Daughterboard Top View.

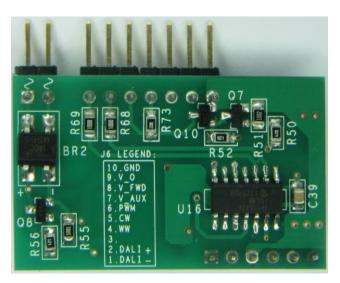


Figure 108 – Daughterboard Bottom View.

15.2 *Circuit Description*

15.2.1 Input Voltage Regulator

To supply power to the microcontroller, the output voltage (V_0) in the motherboard is tapped as input to a linear voltage regulator U11 that supplies a fixed 5V to the microcontroller U16 and the rest of the daughterboard. The output voltage was selected as the input voltage source, instead of the auxiliary winding output (V_{AUX}), because it can provide sufficient hold-up time of more than 2 seconds. This specification is crucial to the operation of the CCT toggle, wherein the microcontroller is expected to operate specifically when the AC is turned off for a fixed duration. C40 and C41 are decoupling capacitors for linear regulator U11. Inductor L4 and C39 are low pass filters for the microcontroller's voltage supply.

15.2.2 DALI Dimming Circuit

The DALI bus carries the data signals and a DALI interface circuit provides communication between a microcontroller and DALI bus. In this case the microcontroller is PIC16F18326 (U16). The interface circuit is isolated with the microcontroller part via two optocouplers (U12 and U13). The optocouplers provide isolation and avoid the risk of sharing common ground. For data receive, the DALI bus output signal drives the optocoupler U12 via Q9 to transfer the data to the microcontroller. For data transmit, the microcontroller drives the optocoupler U13 directly to get into the DALI bus modulated via Q8.

The data that were received or transmitted from the microcontroller is now used to control the LED output current (i.e LED brightness). The microcontroller generates a PWM output signal (pin 5), and the brightness of the LED can be changed upon the duty of the PWM signal.

15.2.3 CCT Circuit

The CCT circuit is comprised of a forward voltage detection circuit, and two MOSFETs that control two LED strings. This is implemented by turning on either one of two MOSFETs, or both at the same time – resulting in the three color combinations. Gate resistors R68 and R69 limit the current supplied by the microcontroller to the MOSFET gate pins.

A change in LED color is triggered by toggling the AC supply. To detect both the turn-off and turn-on edge transition, the forward voltage level is sensed by the microcontroller. The forward voltage V_{FWD} is a switching voltage signal. Peak detection circuit comprised of R70, D1 and C42 captures only the peak of V_{FWD} . The resulting voltage level seen by C42, ranging from 40V to 70V, is too high for the microcontroller input. Zener diode VR8 and resistors R71 R72 provide a fixed step-down factor. This level is then inside the microcontroller input's operating limits. Labeled as COMP_IN, this voltage is used by the microcontroller as a comparator input to quickly detect the change in forward voltage

level. The value of R72 is tuned to accommodate the input voltage range 180 VAC to 265 VAC.

15.2.4 *Connector Pinouts*

The daughterboard has two input connectors J5 and J6. Programming port J5 provides an interface for a Microchip PICkit 3 programmer/debugger. J6 provides an interface to the motherboard. The tables below summarize the function of each pin.

15.2.5 *J5 Pinout*

Pin Number	Label	Description	
1	MCLR / VPP	Reset	
2 VDD		Power on target	
3	GND	Ground	
4	PGD (ICSPDAT)	Programming Data Signal	
5	PGC (ICSPCLK)	Programming Clock Signal	
6	PGM (LVP)	Low voltage programming	

15.2.6 *J6 Pinout*

Pin Number	Label	Description	
1	DALI-	DALI negative input	
2	DALI+	DALI positive input	
3	-	Not connected	
4 WW Gate signal for warm white MOS		Gate signal for warm white MOSFET	
5 CW		Gate signal for cool white MOSFET	
6 PWM PWM signal used as input for dimming		PWM signal used as input for dimming circuit	
7	7 V_AUX Auxiliary winding voltage		
8	8 V_FWD FORWARD pin voltage		
9	V_0	Output voltage	
10 GND Ground		Ground	

15.3 *Schematic*

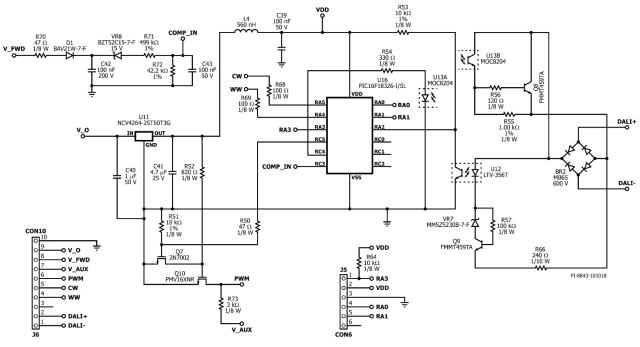
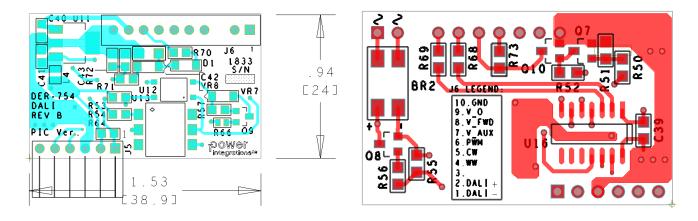
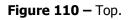
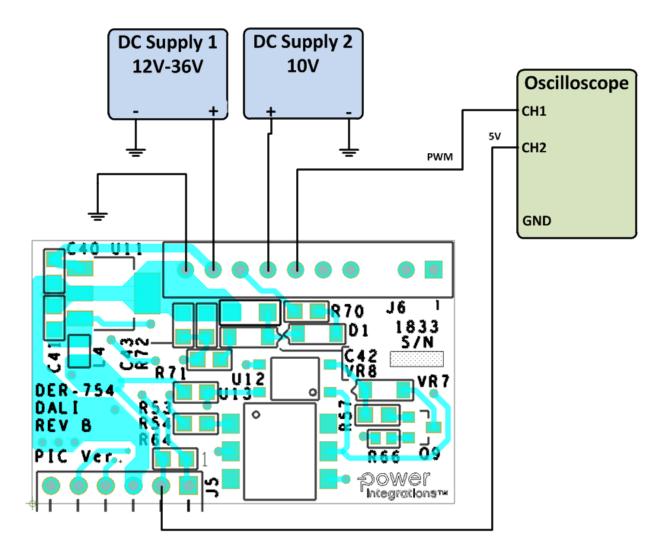
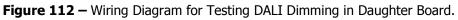



Figure 109 – Schematic Diagram.

15.4 PCB Layout




Figure 111 – Bottom.



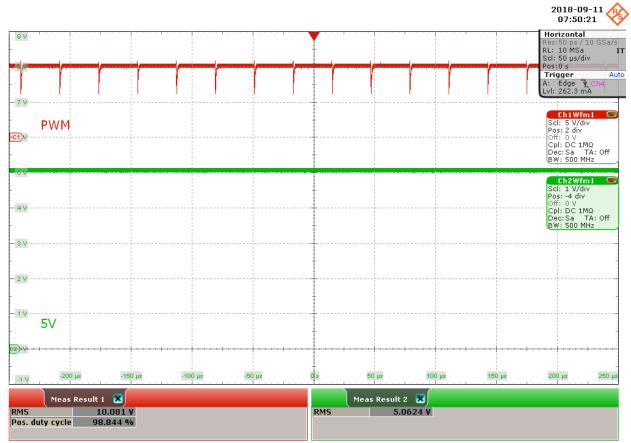
15.5 Board Level Test for DALI

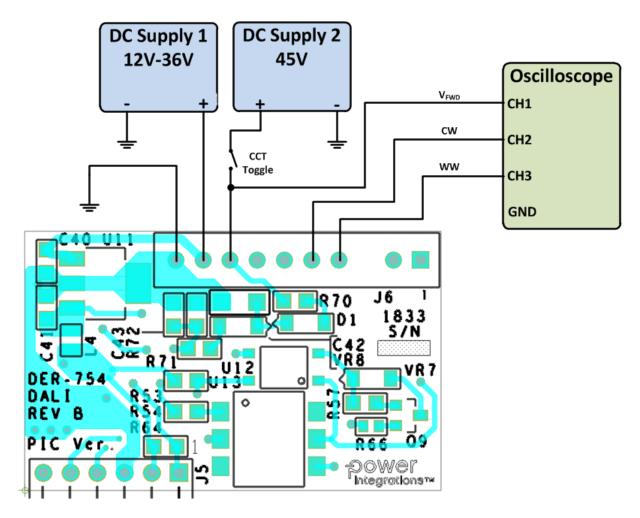
Please follow below procedures to test the DALI daughter board.

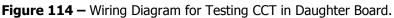
- 15.5.1 Lab Equipment to be Used DC Power Supply 1 (up to 36 V, 100 mA) DC Power Supply 2 (up to 10 V, 100 mA) Digital Oscilloscope
- 15.5.2 Wiring Diagram for the Test Set-up

15.5.3 *Procedures*

- 1. Construct the wiring diagram on the figure above.
- 2. Connect the positive terminal of DC power supply 1 to V_0 pin (Pin 9) of J6, and the negative terminal on GND pin (Pin 10)
- 3. Connect the positive terminal of DC power supply 2 to V_{AUX} pin (Pin 7) of J6, and the negative terminal on GND pin (Pin 10)
- 4. Connect the two channels of the oscilloscope accordingly: CH1 on PWM pin (Pin 6 of J6), CH2 on 5 V pin (Pin 2 OF J5), and the GND terminals on the GND pin (Pin 10).
- 5. Turn on both DC power supplies.
- 6. On the oscilloscope, set CH1 vertical scale to 5 V / div. Set CH2 vertical scale to 1 V / div. And set the horizontal scale to 50 μs / div.
- 7. Confirm that the measured RMS voltage on CH2 is in the range 4.75 V 5.25 V.
- 8. Confirm that the measured duty cycle on CH1 is in the range 97% 100%.
- 9. Confirm that the RMS voltage measured on CH1 is in the range 9.5 V 10.5 V.
- 10. Any measurement outside the specified range indicates that there could be something wrong with the DALI circuit.




Figure 113 – Sample Measurements for Step 7 to Step 9.



15.6 Board Level Test for CCT

Please follow below procedures to test the DALI daughter board.

- 15.6.1 Lab Equipment to be Used DC Power Supply 1 (up to 36 V, 100 mA) DC Power Supply 2 (up to 45 V, 100 mA) Digital Oscilloscope
- 15.6.2 Wiring Diagram for the Test Set-up

01-Nov-18

15.6.3 *Procedures*

- 1. Construct the wiring diagram on the figure above.
- 2. Connect the positive terminal of DC power supply 1 to V_0 pin (Pin 9) of J6, and the negative terminal on GND pin (Pin 10)
- 3. Connect the positive terminal of DC power supply 2 to V_{FWD} pin (Pin 8) of J6, and the negative terminal on GND pin (Pin 10). You may choose to insert a switch in series on the positive terminal. This will emulate the CCT toggle command.
- 4. Connect the three channels of the oscilloscope accordingly: CH1 on V_{FWD} pin (Pin 8), CH2 on CW pin (Pin 5), CH3 on WW pin (Pin 4), and the GND terminals on the GND pin (Pin 10).
- 5. Turn on both DC power supplies, and close the CCT toggle switch, if present.
- 6. Upon turning on, measure the mean voltage of CH2 and CH3. It should both be 5V, indicating that two LED strings will be turned on.
- 7. Momentarily open and then close the toggle switch, or equivalently, turn off dc power supply 2 and then back on again.
- 8. Confirm that CH2 measures 5V, and CH3 measures 0V. This indicates that only cool white string will be turned on.
- 9. Repeat step 7.
- 10. Confirm that CH2 measures 0V, and CH3 measures 5V. This indicates that only warm white string will be turned on.
- 11. Repeat step 7 again.
- 12. Both CH2 and CH3 should measure 5V again. This indicates that the color state has returned back to its default state.
- 13. If the color state change behavior described in steps 6 to 12 are not observed, there may be something wrong with the forward voltage sensing circuit.

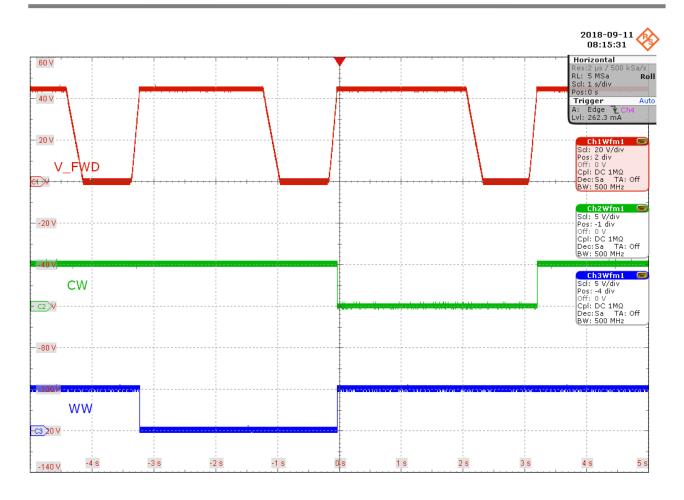


Figure 115 – Color State Change as Describe in Step 6 to Step 12

15.7 DALI Dimming and CCT Set-up

Before testing the DALI dimming, make sure to check the following:

- 1. The DALI Daughter Board **should be** connected to the main board.
- 2. Resistors R69 and R70 **should not be placed**
- 3. The female jumpers (Sullins PN: SPC02SYAN) **should be disconnected** from connectors J4 and J5.
- 4. Refer to the figure below for the proper wiring diagram.

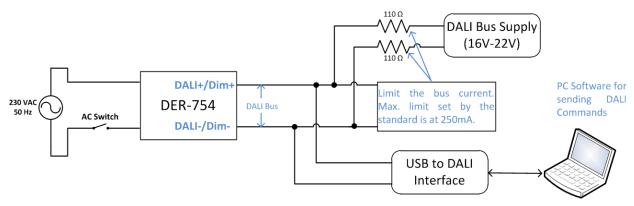
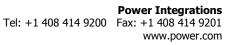
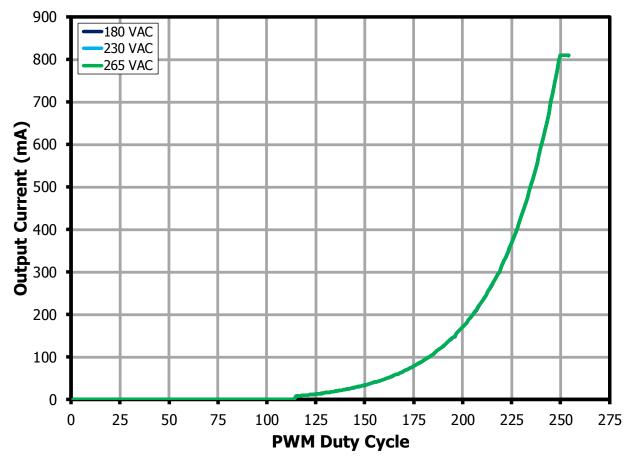


Figure 116 – Wiring Diagram for Testing the DALI Dimming and CCT Response.

01-Nov-18


15.8 Bill of Materials

15.8.1 *Electricals*


Item	Qty	Ref Des	Description	Mfg Part Number	Mfg	
1	1	BR2	600 V, 0.5 A, Bridge Rectifier, SMD, MBS-1, 4-SOIC	MB6S-TP	Micro Commercial	
2	1	C39	100 nF, 50 V, Ceramic, X7R, 0805	CC0805KRX7R9BB104	Yageo	
3	1	C40	$1~\mu\text{F},\pm10\%$,50 V, Ceramic, X7R, AEC-Q200, Automotive, Boardflex Sensitive, 0805, -55°C \sim 125°C	CGA4J3X7R1H105K125AE	TDK	
4	1	C41	4.7 μF ±10%, 25 V, X7R, 0805, -55°C ~ 125°C	TMK212AB7475KG-T	Taiyo Yuden	
5	1	C42	100 nF, 200 V, Ceramic, X7R, 1206	C1206C104K2RACTU	Kemet	
6	1	C43	100 nF, 50 V, Ceramic, X7R, 0805	CC0805KRX7R9BB104	Yageo	
7	1	D1	250 V, 0.2 A, Fast Switching, 50 ns, SOD-123	BAV21W-7-F	Diodes, Inc.	
8	1	L4	560 nH, 230 mADC, 1.9 ohm max, Q=23 @ 50 MHz, Fr= 320 MHz, unshielded, ceramic, wirewound, -40°C ~ 125°C,Wirewound,0805, SMD	AISC-0805-R56G-T	Abracon	
9	1	Q7	60 V, 115 mA, SOT23-3	2N7002-7-F	Diodes, Inc.	
10	1	Q8	NPN, Small Signal BJT, 450 V, 0.5 A, 150 mA ,SOT-23	FMMT459TA	Diodes, Inc.	
11	1	Q9	NPN, Small Signal BJT, 450 V, 0.5 A, 150 mA ,SOT-23	FMMT459TA	Diodes, Inc.	
12	1	Q10	MOSFET, N-CH, 20 V, SOT23	PMV16XNR	NXP	
13	1	R50	RES, 47 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ470V	Panasonic	
14	1	R51	RES, 10 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF1002V	Panasonic	
15	1	R52	RES, 820 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ821V	Panasonic	
16	1	R53	RES, 10 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF1002V	Panasonic	
17	1	R54	RES, 330 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ331V	Panasonic	
18	1	R55	RES, 1.00 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF1001V	Panasonic	
19	1	R56	RES, 120 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ121V	Panasonic	
20	1	R57	RES, 100 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ104V	Panasonic	
21	1	R64	RES, 10 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ103V	Panasonic	
22	1	R66	RES, 240 Ω, 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ241V	Panasonic	
23	1	R68	RES, 100 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ101V	Panasonic	
24	1	R69	RES, 100 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ101V	Panasonic	
25	1	R70	RES, 47 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ470V	Panasonic	
26	1	R71	RES, 499 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF4993V	Panasonic	
27	1	R72	RES, 42.2 kΩ, 1%, 1/8 W, Thick Film, 0805	ERJ-6ENF4222V	Panasonic	
28	1	R73	RES, 3 kΩ, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ302V	Panasonic	
29	1	U11	IC, Linear Voltage Regulator, Positive, Fixed, 1 Output, 5 V, 0.1 A, SOT-223, SOT-223-3, TO-261-4, TO-261AA	NCV4264-2ST50T3G	ON Semi	
30	1	U12	Optoisolator, Transistor Output, 3750 Vrms, 1 Channel,-55°C ~ LTV-356T 110°C, 4-SOP (2.54 mm)		Lite-On	
31	1	U13	Optoisolator, Transistor Output, 4170 Vrms, -40°C or 100°C 1		ON Semi	
32	1	U16	IC, PIC, PIC®, XLP [™] , 16F Microcontroller IC, 8-Bit, 32 MHz, 28KB (16K x 14), FLASH, 14-SOIC	PIC16F18326-I/SL	Microchip Technology	
33	1	VR7	DIODE ZENER 4.7 V 500 mW SOD123	MMSZ5230B-7-F	Diodes, Inc.	
34	1	VR8	15 V, 5%, 500 mW, SOD-123	BZT52C15-7-F	ON Semi	

15.8.2 *Mechanicals*

Item	Qty	Ref Des	Description	Mfg Part Number	Mfg
1	1	J5	6 Position (1 x 6) header, 0.1 pitch, R/A Tin	22-05-2061	Molex
2	1	J6	10 Position (1 x 10) header, 0.1 pitch, Vertical	22-28-4100	Molex

15.9 *Dimming Performance with DALI Command*

Figure 117 – Dimming Performance vs DALI Command Level at Neutral White.

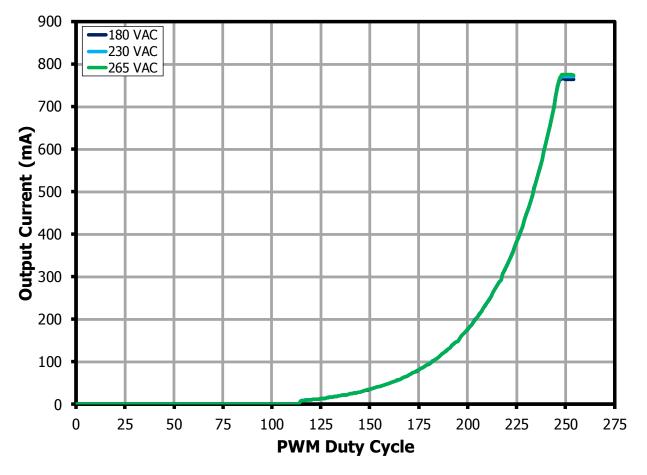
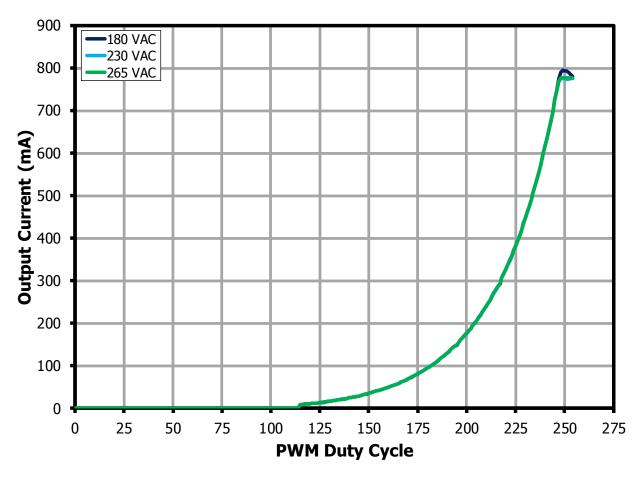
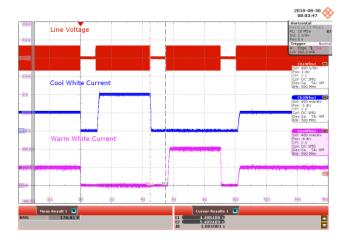
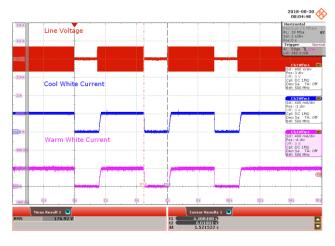
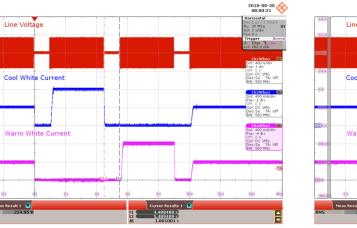
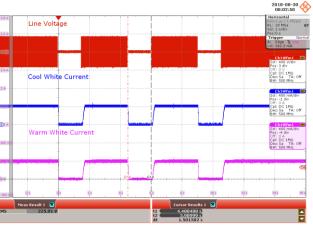


Figure 118 – Dimming Performance vs DALI Command Level at Cool White.

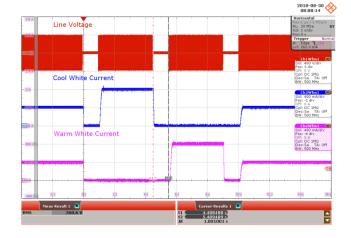



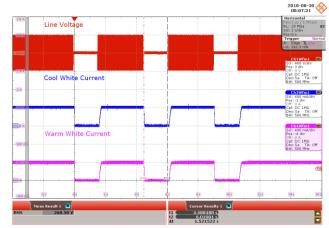

Figure 119 – Dimming Performance vs DALI Command Level at Warm White.


15.10 CCT Toggle Performance


 $\label{eq:Figure 120 - 180 VAC 50 Hz, 800 mA LED Load. \\ 1.0 s Turn Off Pulse. \\ Upper: V_{IN}, 400 V / div. \\ Middle: I_{WW}, 400 mA / div. \\ Lower: I_{CW}, 400 mA / div., 1 s / div. \\ \end{array}$

 $\label{eq:Figure 121-180 VAC 50 Hz, 800 mA LED Load.} 1.5 s Turn Off Pulse. \\ Upper: V_{IN}, 400 V / div. \\ Middle: I_{WW}, 400 mA / div. \\ Lower: I_{CW}, 400 mA / div., 1 s / div. \\ \end{array}$


 $\label{eq:Figure 122 - 230 VAC 50 Hz, 800 mA LED Load. \\ 1.0 s Turn Off Pulse. \\ Upper: V_{IN}, 400 V / div. \\ Middle: I_{WW}, 400 mA / div. \\ Lower: I_{CW}, 400 mA / div., 1 s / div. \\ \end{array}$



 $\label{eq:Figure 123 - 230 VAC 50 Hz, 800 mA LED Load. \\ 1.5 s Turn Off Pulse. \\ Upper: V_{IN}, 400 V / div. \\ Middle: I_{WW}, 400 mA / div. \\ Lower: I_{CW}, 400 mA / div., 1 s / div. \\ \end{array}$

 $\label{eq:Figure 124} \begin{array}{c} -\ 265 \ \text{VAC 50 Hz}, \ 800 \ \text{mA LED Load}. \\ 1.0 \ \text{s Turn Off Pulse}. \\ \text{Upper: V_{IN}, 400 V / div.} \\ \text{Middle: I_{WW}, 400 \ \text{mA / div.}} \\ \text{Lower: I_{CW}, 400 \ \text{mA / div.}, 1 \ \text{s / div.} \end{array}$

 $\label{eq:Figure 125 - 265 VAC 50 Hz, 800 mA LED Load. \\ 1.5 s Turn Off Pulse. \\ Upper: V_{IN}, 400 V / div. \\ Middle: I_{WW}, 400 mA / div. \\ Lower: I_{CW}, 400 mA / div., 1 s / div. \\ \end{array}$

16 Revision History

Date	Author	Revision	Description and Changes	Reviewed
01-Nov-18	JPNB	1.0	Initial Release.	Apps & Mktg

For the latest updates, visit our website: www.power.com

Reference Designs are technical proposals concerning how to use Power Integrations' gate drivers in particular applications and/or with certain power modules. These proposals are "as is" and are not subject to any qualification process. The suitability, implementation and qualification are the sole responsibility of the end user. The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein , necommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent Information

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at <u>WWW.pOWEr.COM</u>. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, InnoSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, FluxLink, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2015 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: usasales@power.com

GERMANY

(IGBT Driver Sales) HelwegForum 1 59469 Ense, Germany Tel: +49-2938-64-39990 Email: igbtdriver.sales@power.com

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: koreasales@power.com

CHINA (SHANGHAI) Rm 2410, Charity Plaza, No. 88.

88, North Caoxi Road, Shanghai, PRC 200030 Phone: +86-21-6354-6323 Fax: +86-21-6354-6325 e-mail: chinasales@power.com **INDIA** #1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 e-mail:

SINGAPORE

indiasales@power.com

51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015

singaporesales@power.com

CHINA (SHENZHEN)

17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057 Phone: +86-755-8672-8689 Fax: +86-755-8672-8690 e-mail: chinasales@power.com

ITALY

Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 Fax: +39-028-928-6009 e-mail: eurosales@power.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: taiwansales@power.com

GERMANY

(AC-DC/LED Sales) Lindwurmstrasse 114 80337, Munich Germany Phone: +49-895-527-39110 Fax: +49-895-527-39200 e-mail: eurosales@power.com

JAPAN

Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: japansales@power.com

UK

Cambridge Semiconductor, a Power Integrations company Westbrook Centre, Block 5, 2nd Floor Milton Road Cambridge CB4 1YG Phone: +44 (0) 1223-446483 e-mail: eurosales@power.com

e-mail: