1	Hiper_PFS-4_Boost_051319; Rev.1.2; Copyright Power Integrations 2019	INPUT	INFO	OUTPUT	UNITS	Continuous Mode Boost Converter Design Spreadsheet
2	Enter Application Variables					Design Title
3	Input Voltage Range	High Line		High Line		Input voltage range
4	VACMIN			185	VAC	Minimum AC input voltage. Spreadsheet simulation is performed at this voltage. To examine operation at other voltages, enter here, but enter fixed value for LPFC_ACTUAL.
5 6	VACMAX VBROWNIN			265 167	VAC VAC	Maximum AC input voltage Expected Typical Brown-in Voltage per IC specifications; Line impedance not
7	VBROWNOUT			156	VAC	accounted for. Expected Typical Brown-out voltage per IC specifications; Line impedance not
8	VO			385	VDC	accounted for. Nominal load voltage
9	PO	466		466	W	Nominal Output power
10	fL			50	Hz	Line frequency
11	TA Max			40	°C	Maximum ambient temperature
12	Efficiency Estimate	0.95		0.95		Enter the efficiency estimate for the boost converter at VACMIN. Should approximately match calculated efficiency in Loss Budget section
13 14	VO_MIN			366	VDC	Minimum Output voltage
15	VO_RIPPLE_MAX T_HOLDUP	16	Warning	20 16	VDC ms	Maximum Output voltage ripple Expected holdup time is smaller than specified value. Please use larger Output capacitance
16	VHOLDUP_MIN			308	VDC	Minimum Voltage Output can drop to during holdup
17	I_INRUSH			40	Α	Maximum allowable inrush current
18	Forced Air Cooling	Yes		Yes		Enter "Yes" for Forced air cooling. Otherwise enter "No". Forced air reduces acceptable choke current density and core autopick core size
19 20	KP and INDUCTANCE					
21	KP_TARGET			0.80		Target ripple to peak inductor current ratio at the peak of VACMIN. Affects inductance value
22	LPFC_TARGET (0 bias)			172	uH	PFC inductance required to hit KP_TARGET at peak of VACMIN and full load
23	LPFC_DESIRED (0 bias)			172	uH	LPFC value used for calculations. Leave blank to use LPFC_TARGET. Enter value to hold constant (also enter core selection) while changing VACMIN to examine brownout operation. Calculated inductance with rounded (integral) turns for powder core.
24	KP_ACTUAL			0.802		Actual KP calculated from LPFC_DESIRED
25 26	LPFC_PEAK			172	uH	Inductance at VACMIN and maximum bias current. For Ferrite, same as LPFC_DESIRED (0 bias)
27	Basic current parameters					
28	IAC RMS			2.65	A	AC input RMS current at VACMIN and Full Power load
29	IO DC			1.21	A	Output average current/Average diode current
30	1525					
31 32						
	PFS Parameters					
33	PFS Package	H/L		H/L		HiperPFS package selection
34 35	PFS Part Number	Auto		PFS7636H		If examining brownout operation, over-ride autopick with desired device size
36	Operating Mode	Full Power		Full Power		Mode of operation of PFS. For Full Power mode enter "Full Power" otherwise enter "EFFICIENCY" to indicate efficiency mode
37	IOCP min			6.80 7.20	A	Minimum Current limit Typical current limit
38	IOCP typ IOCP max			7.50	A A	Maximum current limit
39	IP			6.24	A	MOSFET peak current
40	IRMS			2.01	Α	PFS MOSFET RMS current
41	RDSON			0.49	Ohms	Typical RDSon at 100 'C
42	FS_PK			114.4	kHz	Estimated frequency of operation at crest of input voltage (at VACMIN)
43	FS_AVG			102.8	kHz	Estimated average frequency of operation over line cycle (at VACMIN)
44	PCOND_LOSS_PFS			1.998	W	Estimated PFS conduction losses
45 46	PSW_LOSS_PFS DES_TOTAL		1	1.836	W	Estimated PFS switching losses Total Estimated PFS losses
47	PFS_TOTAL TJ Max			3.833	W deg C	Total Estimated PFS losses Maximum steady-state junction temperature
48	Rth-JS			2.80	°C/W	Maximum thermal resistance (Junction to heatsink)
49	HEATSINK Theta-CA			12.85	°C/W	Maximum thermal resistance of heatsink
EC.						
50						
51	INDUCTOR REGION	1	1			
51 52	INDUCTOR DESIGN					
51	INDUCTOR DESIGN Basic Inductor Parameters LPFC (0 Bias)			172	uH	Value of PFC inductor at zero current. This is the value measured with LCR
51 52 53	Basic Inductor Parameters LPFC (0 Bias)					meter. For powder, it will be different than LPFC.
51 52 53 54	Basic Inductor Parameters			172 10.0 2.99	uH % A	
51 52 53 54 55	Basic Inductor Parameters LPFC (0 Bias) LP_TOL			10.0	%	meter. For powder, it will be different than LPFC. Tolerance of PFC Inductor Value (ferrite only)
51 52 53 54 55 56	Basic Inductor Parameters LPFC (0 Bias) LP_TOL IL_RMS	Ferrite		10.0	%	meter. For powder, it will be different than LPFC. Tolerance of PFC Inductor Value (ferrite only)
51 52 53 54 55 56 57 58	Basic Inductor Parameters LPFC (0 Bias) LP_TOL IL_RMS Material and Dimensions Core Type Core Material	Ferrite Auto		10.0 2.99 Ferrite PC44/PC95	%	meter. For powder, it will be different than LPFC. Tolerance of PFC Inductor Value (ferrite only) Inductor RMS current (calculated at VACMIN and Full Power Load) Enter "Sendust", "Iron Powder" or "Ferrite" Select from 60u, 75u, 90u or 125 u for Sendust cores. Fixed at PC44/PC95 for Ferrite cores. Fixed at -52 material for Pow Iron cores.
51 52 53 54 55 56 57 58	Basic Inductor Parameters LPFC (0 Bias) LP_TOL IL_RMS Material and Dimensions Core Type			10.0 2.99 Ferrite	%	meter. For powder, it will be different than LPFC. Tolerance of PFC Inductor Value (ferrite only) Inductor RMS current (calculated at VACMIN and Full Power Load) Enter "Sendust", "Iron Powder" or "Ferrite" Select from 60u, 75u, 90u or 125 u for Sendust cores. Fixed at PC44/PC95 for

00	1.			.=		Ta
62	Ae			170.00	mm^2	Core cross sectional area
63	Le			55.50	mm	Core mean path length
64	AL			6530.00	nH/t^2	Core AL value
65	Ve			9.44	cm^3	Core volume
66	HT (EE/PQ/EQ/RM/POT) / ID (toroid)			5.12	mm	Core height/Height of window; ID if toroid
67	MLT			67.1	mm	Mean length per turn
68	BW			8.98	mm	Bobbin width
69	LG			0.47		
70				0.47	mm	Gap length (Ferrite cores only)
/0	Flux and MMF calculations					
71	BP_TARGET (ferrite only)			3900	Gauss	Target flux density at worst case: IOCP and maximum tolerance inductance
						(ferrite only) - drives turns and gap
72	B OCP (or BP)			3793	Gauss	Target flux density at worst case: IOCP and maximum tolerance inductance
						(ferrite only) - drives turns and gap
73	B MAX			2867	Gauss	Peak flux density at AC peak, VACMIN and Full Power Load, nominal
						inductance,minimum IOCP
74	μ TARGET (powder only)			N/A	%	target µ at peak current divided by µ at zero current, at VACMIN, full load
	F,,				• •	(powder only) - drives auto core selection
75	μ MAX (powder only)			N/A	%	actual µ at peak current divided by µ at zero current, at VACMIN, full load
	<u> </u>				,,	(powder only)
76	μ OCP (powder only)			N/A	%	μ at IOCPtyp divided by μ at zero current
77	. =					
, ,	I_TEST			7.2	Α	Current at which B_TEST and H_TEST are calculated, for checking flux at a current other than IOCP or IP; if blank IOCP_typ is used.
78	D TEST		-	2011	0	— • •
	B_TEST			3641	Gauss	Flux density at I_TEST and maximum tolerance inductance
79	μ_TEST (powder only)			N/A	%	μ at IOCP divided by μ at zero current, at IOCPtyp
80	Wire					
81	TURNS			22		Inductor turns. To adjust turns, change BP_TARGET (ferrite) or µ_TARGET
				"		[(powder)] (powder)
82	ILRMS			2.99	Α	Inductor RMS current
83					А	
	Wire type	Litz		Litz		Select between "Litz" or "Magnet" for double coated magnet wire
84	AWG	40	Info	40	AWG	Selected wire has increased losses due to skin and proximity effects. Consider
						using multiple strands of thinner wires, Litz wire, or decreasing the number of
						layers
85	Filar			154		Inductor wire number of parallel strands. Leave blank to auto-calc for Litz
86	OD (per strand)			0.079	mm	Outer diameter of single strand of wire
87	OD bundle (Litz only)			1.37	mm	Will be different than OD if Litz
88	DCR			0.044	ohm	Choke DC Resistance
89	-				Offili	
	P AC Resistance Ratio			1.60		Ratio of total copper loss, including HF AC, to the DC component of the loss
90	J		Info	3.99	A/mm^2	Current density is low. If copper loss is low, you can use thinner wire or fewer
						strands
91	FIT			90	%	Percentage fill of winding window for EE/PQ core. Full window approx. 90%
92	Layers			3.53		Estimated layers in winding
93	Loss calculations					
94	ВАС-р-р			2298	Causa	Core AC peak-peak flux excursion at VACMIN, peak of sine wave
					Gauss	
95	LPFC_CORE_LOSS			0.843	W	Estimated Inductor core Loss
96	LPFC_COPPER_LOSS			0.631	W	Estimated Inductor copper losses
97	LPFC_TOTAL_LOSS			1.473	W	Total estimated Inductor Losses
98						
99						
100	External PFC Diode					
101	PFC Diode Part Number	Auto		LXA08T600		PFC Diode Part Number
		Auto				
102	Type / Part Number			Qspeed		PFC Diode Type / Part Number
103	Manufacturer			PI		Diode Manufacturer
104	VRRM			600.0	V	Diode rated reverse voltage
105	IF .			8.00	Α	Diode rated forward current
106	Qrr			82.0	nC	Qrr at High Temperature
107	VF			2.10	V	Diode rated forward voltage drop
108	PCOND DIODE			2.697	W	Estimated Diode conduction losses
109	=					
	PSW_DIODE			0.245	W	Estimated Diode switching losses
	P_DIODE			2.942	W	Total estimated Diode losses
111	TJ Max			100.0	deg C	Maximum steady-state operating temperature
112	Rth-JS			1.50	degC/W	Maximum thermal resistance (Junction to heatsink)
113	HEATSINK Theta-CA			18.39	degC/W	Maximum thermal resistance of heatsink
114	IFSM			60.0	A	Non-repetitive peak surge current rating. Consider larger size diode if inrush or
				55.5	,,	thermal limited.
115						
116						
117	Output Capacitor					
140					_	Minimum and the of Outral 1
118	COUT	270		270	uF	Minimum value of Output capacitance
119	VO_RIPPLE_EXPECTED			15.0	V	Expected ripple voltage on Output with selected Output capacitor
120	T_HOLDUP_EXPECTED			15.5	ms	Expected holdup time with selected Output capacitor
121	ESR LF			0.55	ohms	Low Frequency Capacitor ESR
	ESR_HF			0.25	ohms	High Frequency Capacitor ESR
123						Low Frequency Capacitor RMS current
	IC_RMS_LF			0.88	Α	
124	IC_RMS_HF			1.58	Α	High Frequency Capacitor RMS current
125	CO_LF_LOSS			0.425	W	Estimated Low Frequency ESR loss in Output capacitor
	CO HF LOSS			0.622	W	Estimated High frequency ESR loss in Output capacitor
126		1				
126 127	Total CO LOSS			1.047	W	Total estimated losses in Output Capacitor

	128				
1986	129				
See Current rating	130	Input Bridge (BR1) and Fuse (F1)			
20			10.00	A AO*-	Minimum 1004 nation for fund
1975 1975					-
March Marc		9			<u> </u>
1979 V Perit Prefixed 1975 V Perit Prefixer voltage of Impub Linging V V V V V V V V V					Input bridge Diode forward Diode drop
Section Sect	134	IAVG	2.37	A	Input average current at VBROWNOUT.
December	135	PIV_INPUT BRIDGE	375	V	Peak inverse voltage of input bridge
Section	136	PCOND LOSS BRIDGE	4.297	w	Estimated Bridge Diode conduction loss
ON OF 9.000 1.000	137		0.82	uF	•
1985 N. P.			0.02	<u> </u>	
1988 1971 1975	138	CIN DE	0.001		3
19				10/	
International Processing Contents International Contents Internat		_			
Page				onms	'
Feedback Components		D_Precharge	1N5407		Recommended precharge Diode
March Marc	142				
Company Comp					
March Marc	144	PFS4 small signal components			
March Marc	145	C REF	1.0	uF	REF pin capacitor value
147 147	146		4.0	MOhms	• •
Modern M	147				
We will be a comment of the commen					
Description				-	2.
Pick the closest available capacitance.					
10	150	C_V	0.495	nF	V pin decoupling capacitor (RV4 and C_V should have a time constant of 80us)
Section Sect					· ·
Now pand to lower threshold VPG(L) Service	151	c_vcc	1.0	uF	Supply decoupling capacitor
333 V	152	c_c	100	nF	Feedback C pin decoupling capacitor
33.0 Norm	153	Power good Vo lower threshold VPG(L)	333	V	Vo lower threshold voltage at which power good signal will trigger
Feedback Components	154	, ,			0 1 0 0
Feedback Components Feedback New Present		1 01 301 1033101	000.0	Komin	1 Ower good threshold setting resistor
February					
September Sept	_	Foodback Components			
Fee 2		•			
RFB_3	158	RFB_1	4.00	Mohms	Feedback network, first high voltage divider resistor
1918 Fig. 4 1918 1919	159	RFB_2	6.00	Mohms	Feedback network, second high voltage divider resistor
1918 Fig. 4 1918 1919	160	RFB 3	6.00	Mohms	Feedback network, third high voltage divider resistor
CBB	161	RFB 4	161.6	kohms	
REB_5 REB_5 REB_6 REB_6 REB_6 REB_7 REB_7 REB_8 REB_6 REB_6 REB_8 REB_6 REB_7 REB_8 REB_6 REB_7 REB_8	162	_			,
RB_5		CFD_1	0.493	1115	
CFB 2	163	DED 5	22.1	kohmo	, ,
		=			· ·
Section		CFB_2	1000	n⊦	Feedback component- noise suppression capacitor
Loss Budget (Estimated at VACMIN)					
PFS Losses 3.833 W Total estimated losses in PFS					
Boost close Losses 2.942 W Total estimated losses in Output Diode	107	Loss Budget (Estimated at VACMIN)			
input Bridge losses A.297 W Total estimated losses in input bridge module	168	PFS Losses	3.833	W	Total estimated losses in PFS
Input Capacitor Losses 0.021 W Total estimated losses in input capacitor	169	Boost diode Losses	2.942	W	Total estimated losses in Output Diode
Input Capacitor Losses 0.021 W Total estimated losses in input capacitor	170	Input Bridge Josses	4 297	w	·
Inductor losses Inductor losses Interpretation of the component selection recommendation CAPZero Device COPZERO Device CAPZero		-			
Output Capacitor Loss 1.047 W Total estimated losses in Output capacitor Total losses 1.047 W Total estimated losses in EMI choke copper Total losses 1.043 W Overall loss estimate Total losses 1.043 W Overall loss estimate Total losses 1.043 W Overall loss estimate Total losses 1.044 W Overall loss estimate Total losses 1.047 W Overall loss estimate Total losses 1.048 W Overall loss estimate Total losses 1.049 Estimated efficiency at VACMIN, full load. CAPZero component selection recommendation CAPZero component selection recommendation CAPZero Device CAPZero Device CAPZero Device CAPZero Device CAPZero Resistance (Reapzero1+Reapzero2) 0.730 MOhms Maximum Total Series resistor value to discharge X-Capacitor with time constant of 1 second Maximum Total Series resistor value to discharge X-Capacitors Maximum Total Series resistor value		· ·			· ·
Marchael Components 1.00					
Total losses Ifficiency Iffi		·			
Efficiency 1997 Estimated efficiency at VACMIN, full load. 1978 Estimated efficiency at VACMIN, full load. 1979 CAPZero component selection recommendation	174	EMI choke copper loss	0.703	W	Total estimated losses in EMI choke copper
CAPZero component selection recommendation CAPZero Device CAPZero De	175	Total losses	14.316	W	Overall loss estimate
CAPZero component selection recommendation CAPZero Device CAPZero De	176	Efficiency	0.97		Estimated efficiency at VACMIN, full load.
CAPZero component selection recommendation CAPZero Device CAPZero CAP	177				·
CAPZero Device CAPSero Device	178				
CAPZero Device CAPZero Device CAPZero Device CAPZero Device CAPZero device to discharge X-Capacitor with time constant of 1 second Total Series Resistance (Rcapzero1+Rcapzero2) 0.730 MOhms Maximum Total Series resistor value to discharge X-Capacitors EMI filter components recommendation	179	CAPZero component selection recommendation			
Total Series Resistance (Rcapzero1+Rcapzero2) 0.730 MOhms Maximum Total Series resistor value to discharge X-Capacitors		-	CAROODO		(Ontional) Pagammandad CARZara davias to disabarra V Caracitar with time
Total Series Resistance (Rcapzero1+Rcapzero2) Total Series Resistor value to discharge X-Capacitors Total Capacitor Series Resistor value to discharge X-Capacitors Total Capacitor Series Resistor value Total Series Resi	100	CAPZEIO DEVICE	CAPZUUDG		
Section Sect	191	Total Carias Basistanas (Description C)	0.700	MOL	
BM BM FM FM FM FM FM FM		Total Series Resistance (Rcapzero1+Rcapzero2)	0.730	IVIOnms	iviaximum i otal Series resistor value to discharge X-Capacitors
EMI filter components recommendation					
CX2					
LDM_calc 197		EWI TILTER COMPONENTS recommendation		<u></u>	
LDM_calc LDM_ca	185	CX2	470	nF	X capacitor after differencial mode choke and before bridge, ratio with Po
current CX1	186	LDM_calc	197	uH	Estimated minimum differential inductance to avoid <10kHz resonance in input
LCM 10.0 mH typical common mode choke value LCM_leakage 30 uH estimated leakage inductance of CM choke, typical from 30~60uH CY1 (and CY2) 220 pF typical Y capacitance for common mode noise suppression LDM_Actual 167 uH cal_LDM minus LCM_leakage, utilizing CM leakage inductance as DM choke. DCR_LCM 0.070 Ohms Total DCR of CM choke for estimating copper loss DCR_LDM Total DCR of DM choke(or CM #2) for estimating copper loss Note: CX2 can be placed between CM chock and DM choke depending on EMI design requirement.					
10.0 mH typical common mode choke value	187	CX1	470	nF	X capacitor before common mode choke, ratio with Po
LCM_leakage 30 uH estimated leakage inductance of CM choke, typical from 30~60uH CY1 (and CY2) 220 pF typical Y capacitance for common mode noise suppression LDM_Actual 167 uH cal_LDM minus LCM_leakage, utilizing CM leakage inductance as DM choke. DCR_LCM 0.070 Ohms Total DCR of CM choke for estimating copper loss DCR_LDM 0.030 Ohms Total DCR of DM choke(or CM #2) for estimating copper loss Note: CX2 can be placed between CM chock and DM choke depending on EMI design requirement.	188				•
CY1 (and CY2) DCR_LCM DCR_LCM DCR_LDM CONTROL CONTRO					**
DDM_Actual 167					
DCR_LCM DCR_LDM DCR_LDM DCR_LDM DCR_LDM DCR_LDM DCR_LDM DCR_LDM DCR_LDM DCR_CT DM choke for estimating copper loss Total DCR of DM choke(or CM #2) for estimating copper loss Note: CX2 can be placed between CM chock and DM choke depending on EMI design requirement.		· · ·			21 1
DCR_LDM 0.030 Ohms Total DCR of DM choke(or CM #2) for estimating copper loss Note: CX2 can be placed between CM chock and DM choke depending on EMI design requirement.	191	_		uH	
Note: CX2 can be placed between CM chock and DM choke depending on EMI design requirement.	192	DCR_LCM	0.070	Ohms	Total DCR of CM choke for estimating copper loss
Note: CX2 can be placed between CM chock and DM choke depending on EMI design requirement.	193	DCR_LDM	0.030	Ohms	Total DCR of DM choke(or CM #2) for estimating copper loss
Note: CX2 can be placed between CM chock and DM choke depending on EMI design requirement.	194				. , , , , , , , , , , , , , , , , , , ,
		Note: CX2 can be placed between CM check and DM chek	e depending on EM	l design	requirement
190		10.0. SAE out so placed between our chock and bly chok	To appending on EM	. assigii	Toganomona
	196				<u> </u>