

Power Supply Input

Var	Value	Units	Description
VACMIN	175	V	Minimum Input AC Voltage (Manual Overwrite)
VACNOM	220	V	Nominal AC Voltage (For universal designs low line nominal voltage is displayed)
VACMAX	265	V	Maximum Input AC Voltage (Manual Overwrite)
FL	50	Hz	Line Frequency (Manual Overwrite)
η	87.0	%	Efficiency Estimate (Target)
TC	1.86	ms	Input Rectifier Conduction Time
Ζ	0.52		Loss Allocation Factor
VMIN	210.9	V	Minimum DC Input Voltage
VMAX	374.8	V	Maximum DC Input Voltage
ENCLOSURE	Adapter		Enclosure
ТАМВ	60	°C	Maximum Operating Ambient air Temperature

Input Section

Var	Value	Units	Description
Fuse	1.00	Α	Input Fuse Rated Current
IAVG	0.15	Α	Average Diode Bridge Current (DC Input Current)
MOV_VRATED	275	V	MOV Rated Voltage

Device Variables

Var	Value	Units	Description
Device	INN3166C		PI Device Name (Manual Overwrite)
Current Limit Mode	Standard		Device Current Limit Mode
BVDSS	650	V	Drn-Src Bkdn Voltage
ILIMITMIN	1.162	A	Minimum Current Limit
ILIMITTYP	1.250	A	Typical Current Limit
ILIMITMAX	1.338	A	Maximum Current Limit
RDSON	2.02	Ω	PI Device RDSON (100°C)
RDSON_25C	1.30	Ω	PI Device RDSON (25°C)
PO	30.10	W	Total Output Power
VDRAIN Estimated	537.29	V	Estimated Drain Voltage
VOR	91.84	V	Reflected Output Voltage
VDS	0.31	V	On state Drain to Source Voltage
FS	90000	Hz	Switching Frequency (at VMIN and Full Load)
KP	1.177		Continuous/Discontinuous Operating Ratio (at VMIN and Full Load)
DMAX	0.270		Maximum Duty Cycle (at VMIN and Full Load)
TIME_OFF	8.13	μs	Expected Device Off-time (at VMIN and Full Load)
TIME_ON	3.64	μs	Primary controller on-time
IP	1.288	A	Peak Primary Current (at VMIN and Full Load)
IR	1.288	A	Primary Ripple Current (at VMIN and Full Load)
IRMS	0.364	A	Primary RMS Current (at VMIN and Full Load)
UVOV_PRIORITY	Overvoltage		Input Undervoltage/Overvoltage Priority type
RTH_DEVICE	129.25	°C/W	PI Device Heatsink Maximum Thermal Resistance
DEV_HSINK_TYPE	2 Oz (70 μ) 2-Sided Copper		PI Device Heatsink Type
DEV_HSINK_AREA	104	mm²	PI Device Heatsink Area

Clamp Circuit

Var	Value	Units	Description
Сlamp Туре	RCD Clamp		Clamp Circuit Type
VCLAMP	70.68	V	Average Clamping Voltage
VC_MARGIN	113.39	V	Clamp Voltage Safety Margin

Primary Bias Variables

Var	Value	Units	Description
VB	12.0	V	Bias Voltage
VBMIN	9.6	V	Minimum Bias Voltage
VBMAX	24.0	V	Maximum Bias Voltage
Use Linear Regulator	NO		Use Linear Regulator Circuit
PIVB	69	V	Bias Rectifier Maximum Peak Inverse Voltage
NB	7		Primary Bias Winding Number of Turns

Transformer Construction Parameters

Var	Value	Units	Description
Core Type	E25/13/7 (EF25)		Core Type
Core Material	3F3		Core Material
Bobbin Reference	Generic, 5 pri. + 5 sec.		Bobbin Reference
Bobbin Orientation	Vertical		Bobbin type
Primary Pins	5		Number of Primary pins used
Secondary Pins	2		Number of Secondary pins used
USE_SHIELDS	NO		Use shield Windings
LP_nom	574	μH	Nominal Primary Inductance
LP_Tol	5.0	%	Primary Inductance Tolerance
NP	46.0		Calculated Primary Winding Total Number of Turns
NSM	7		Secondary Main Number of Turns
CMA	1408	Cmils/A	Primary Winding Current Capacity
BW	15.30	mm	Bobbin Winding Width
ML	0.00	mm	Safety Margin on Left Width
MR	0.00	mm	Safety Margin on Right Width
FF	69.72	%	Actual Transformer Fit Factor. 100% signifies fully utilized winding window
AE	52.50	mm²	Core Cross Sectional Area
ALG	271	nH/T²	Gapped Core Specific Inductance
ВМ	3178	Gauss	Maximum Flux Density
BP	3417	Gauss	Peak Flux Density
BAC	1589	Gauss	AC Flux Density for Core Loss
LG	0.206	mm	Estimated Gap Length
L_LKG	14.35	μH	Estimated primary leakage inductance
LSEC	20	nH	Secondary Trace Inductance

Primary Winding Section 1

Var	Value	Units	Description
NP1	23		Number of Primary Winding Turns in the First Section of Primary
Wire Size	23	AWG	Primary Winding - Wire Size
Winding Type	Single (x1)		Primary Winding - Number of Parallel Wire Strands

	L	0.95	Primary Winding - Number of Layers
--	---	------	------------------------------------

Primary Winding Section 2

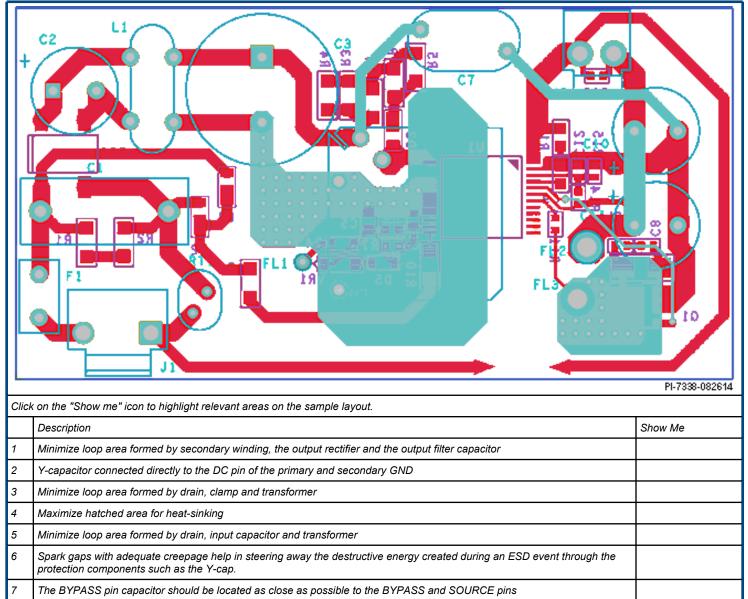
Var	Value	Units	Description
NP2	23		Rounded (Integer) Number of Primary winding turns in the second section of primary
Wire Size	23	AWG	Primary Winding - Wire Size
Winding Type	Single (x1)		Primary Winding - Number of Parallel Wire Strands
L2	0.95		Primary Number of Layers in 2nd split winding

Output 1

Var	Value	Units	Description
VO	14.00	V	Typical Output Voltage
10	2.15	A	Output Current
VOUT_ACTUAL	14.00	V	Actual Output Voltage
Cable Drop Compensation	0	mV	Cable Drop Compensation
NS	7		Secondary Number of Turns
Wire Size	25	AWG	Wire size of secondary winding
Winding Type	Trifilar (x3)		Output winding number of parallel strands
L_S_OUT	0.89		Secondary Output Winding Layers
PIVS	71.03	V	Output Rectifier Maximum Peak Inverse Voltage
ISP	8.464	A	Peak Secondary Current
ISRMS	3.619	А	Secondary RMS Current
RTH_RECTIFIER	121.31	°C/W	Output Rectifier Heatsink Maximum Thermal Resistance
OR_HSINK_TYPE	2 Oz (70 μ) 2-Sided Copper		Output Rectifier Heatsink Type
OR_HSINK_AREA	104	mm²	Output Rectifier Heatsink Area
OSR_RDSON	15.00	mΩ	Synchronous Rectifier RDSON (Manual Overwrite)
со	220 x 1	μF	Output Capacitor - Capacitance
IRIPPLE	2.912	А	Output Capacitor - RMS Ripple Current
Expected Lifetime	24386	hr	Output Capacitor - Expected Lifetime

Feedback Circuit

Var	Value	Units	Description
DUAL_OUTPUT_FB_FLA G	NO		Get feedback from 2 outputs

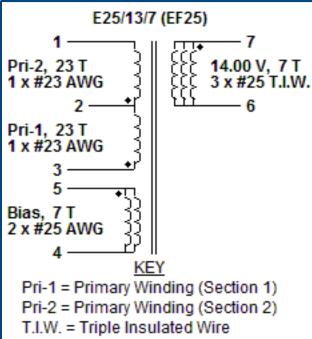

Power Supply Efficiency and Losses (at VACMIN - VACNOM and Full Load)

Var	Value	Units	Description
N_ACTUAL_RANGE	89.84 - 90.10	%	Calculated Efficiency
TOTAL_LOSS_RANGE	3.31 - 3.40	W	Total Power Supply Losses
DEV_LOSS_RANGE	0.58 - 0.63	W	Total Device Circuit Losses
TRF_LOSS_RANGE	0.68 - 0.71	W	Total Transformer Losses
INSTAGE_LOSS_RANGE	1.26 - 1.45	W	Total Primary Side Losses
OUTSTAGE_LOSS_RAN GE	0.70 - 0.74	W	Total Secondary Side Losses

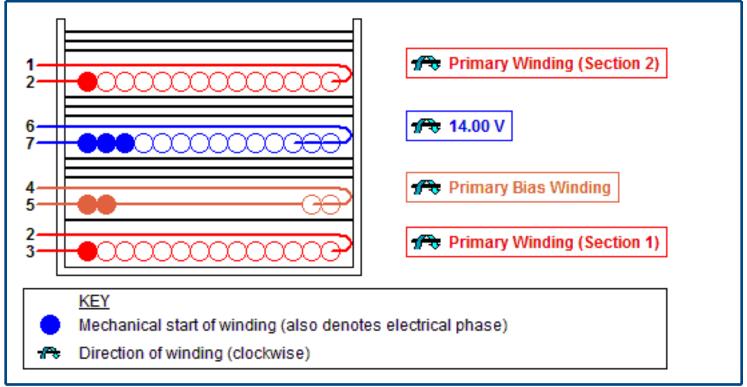
The regulation and tolerances do not account for thermal drifting and component tolerance of the output diode forward voltage drop and voltage drops across the LC post filter. The actual voltage values are estimated at full load only.

Please verify cross regulation performance on the bench.

Board Layout Recommendations



Bill Of Materials


lte m #	Quantity	Part Ref	Value	Description	Mfg	Mfg Part Number
1	1	BR1	DF06M	600 V, 1 A, Standard Recovery Bridge, DFM	International Rectifier	DF06M
2	1	C1	100 nF	100 nF, 275 VAC, Film, X Class	Kemet	R46KI310000M1K
3	1	C2	33 µF	33 μF, 400 V, High Voltage Al Electrolytic, (35 mm x 10 mm)	United Chemi-Con	EPAG400VB33RM10X35LL
4	1	С3	4.7 nF	4.7 nF, 630 V, High Voltage Ceramic	TDK	FA26NP02J472JNU06
5	1	C4	0.47 μF	0.47 μF, 16 V, Ceramic, X7R	TDK	C1608X7R1C474K
6	1	C5	2.2 μF	2.2 μF, 50 V, Ceramic, X7R	Murata	RDER71H225K2K1C03B
7	1	C6	0.33 nF	0.33 nF, 250 VAC, Ceramic, Y Class	Vishay Cera-Mite	440LT33-R
8	1	C7	680 pF	680 pF, 200 V, High Voltage Ceramic	Kemet	C0805C681K2RACAUTO
9	1	C8	22 µF	22 μ F, 35 V, Electrolytic, Gen Purpose, 17 m Ω , (8 mm x 6.3 mm)	Rubycon	35MH722MEFCTZ6.3X7
10	1	C9	220 µF	220 μF, 25 V, Al Organic Polymer, 16 mΩ, (13 mm x 8 mm)	Nichicon	RNU1E221MDN1KX
11	1	C10	100 μF	100 μ F, 16 V, Electrolytic, Low ESR, 300 m Ω , (11 mm x 5 mm)	Panasonic	EEU-FR1C101B
12	1	C11	330 pF	330 pF, 50 V, Ceramic, C0G	ТDК	FK18C0G1H331J
13	1	D1	1N4937	600 V, 1 A, Fast Recovery, 200 ns, DO-41	Vishay	1N4937
14	1	D2	1N4002	100 V, 1 A, Standard Recovery, DO-41	Vishay	1N4002
15	1	F1	1 A	250 VAC, 1 A, Radial TR5, Time Lag Fuse	Littelfuse / Wickmann(R)	37411000410
16	1	L1	6 mH	6 mH, 0.3 A	Kemet	SU9V/H
17	1	L2	3.3 µH	3.3 µН, 2.66 А	Bourns Inc.	RL822-3R3K-RC
18	1	М1	PSMN015-100Y L	MOSFET, N-Channel, 100 V, 69 A, LFPAK-56	Nexperia	PSMN015-100YL
19	1	R1	27 kΩ	27 kΩ, 5 %, 2 W, Metal Oxide Film	Generic	
20	1	R2	8.2 Ω	8.2 Ω, 5 %, 0.25 W, Carbon Film	Generic	
21	2	R3, R4	1.78 MΩ	1.78 MΩ, 1 %, 0.25 W, Metal Film	Generic	
22	1	R5	11 kΩ	11 kΩ, 1 %, 0.125 W, Metal Film	Generic	
23	1	R6	47 Ω	47 Ω, 5 %, 0.125 W, Carbon Film	Generic	
24	1	R7	14 mΩ	14 mΩ, 1 %, 0.25 W, Metal Film	Generic	
25	1	R8	13 Ω	13 Ω, 5 %, 0.5 W, Carbon Film	Generic	
26	1	R9	301 kΩ	301 kΩ, 1 %, 0.125 W, Metal Film	Generic	
27	1	R10	29.4 kΩ	29.4 kΩ, 1 %, 0.125 W, Metal Film	Generic	
28	1	RV1	V275LA4P	275 V, 23 J, 7 mm, RADIAL, MOV	Littelfuse	V275LA4P
29	1	Τ1	E25/13/7 (EF25)	3F3 Core Material See Transformer Construction's Materials List for complete information	Epcos	B66317-G-X127
30	1	U1	INN3166C	InnoSwitch3-CE, INN3166C, inSOP-24D	Power Integrations	INN3166C-H101
31	1			104 mm ² area on Copper PCB. 2 oz (70 μ m) thickness. Heatsink for use with Device U1.	Custom	

32	1			104 mm² area on Copper PCB. 2 oz (70 μm) thickness. Heatsink for use with Rectifier M1.	Custom	
----	---	--	--	---	--------	--

Mechanical Diagram

Winding Instruction

Primary Winding (Section 1)

Start on pin(s) 3 and wind 23 turns (x 1 filar) of item [5]. in 1 layer(s) from left to right. Winding direction is clockwise. On the final layer, spread the winding evenly across entire bobbin. Finish this winding on pin(s) 2.

Add 1 layer of tape, item [3], for insulation.

Primary Bias Winding

Start on pin(s) 5 and wind 7 turns (x 2 filar) of item [6]. Winding direction is clockwise. Spread the winding evenly across entire bobbin. Finish this winding on pin(s) 4.

Add 3 layers of tape, item [3], for insulation.

Secondary Winding

Start on pin(s) 7 and wind 7 turns (x 3 filar) of item [7]. Spread the winding evenly across entire bobbin. Winding direction is clockwise. Finish this winding on pin(s) 6.

Add 3 layers of tape, item [3], for insulation.

Primary Winding (Section 2)

Start on pin(s) 2 and wind 23 turns (x 1 filar) of item [5]. in 1 layer(s) from left to right. Winding direction is clockwise. On the final layer, spread the winding evenly across entire bobbin. Finish this winding on pin(s) 1.

Add 3 layers of tape, item [3], for insulation.

Core Assembly

Assemble and secure core halves. Item [1].

Varnish

Dip varnish uniformly in item [4]. Do not vacuum impregnate.

Comments

1. Use of a grounded flux-band around the core may improve the EMI performance.

2. For non margin wound transformers use triple insulated wire for all secondary windings.

Materials

ltem	Description
[1]	Core: E25/13/7 (EF25), 3F3, gapped for ALG of 271 nH/T ²
[2]	Bobbin: Generic, 5 pri. + 5 sec.
[3]	Barrier Tape: Polyester film [1 mil (25 μm) base thickness], 15.30 mm wide
[4]	Varnish
[5]	Magnet Wire: 23 AWG, Solderable Double Coated
[6]	Magnet Wire: 25 AWG, Solderable Double Coated
[7]	Triple Insulated Wire: 25 AWG

Electrical Test Specifications

Parameter	Condition	Spec
Electrical Strength, VAC	60 Hz 1 second, from pins 1,2,3,4,5 to pins 6,7.	3000
Nominal Primary Inductance, µH	Measured at 1 V pk-pk, typical switching frequency, between pin 1 to pin 3, with all other Windings open.	574
Tolerance, ±%	Tolerance of Primary Inductance	5.0
Maximum Primary Leakage, µH	Measured between Pin 1 to Pin 3, with all other Windings shorted.	14.35

Although the design of the software considered safety guidelines, it is the user's responsibility to ensure that the user's power supply design meets all applicable safety requirements of user's product.

Design Passed (No Optimization)