ACDC_InnoSwitchEP900V_080817; Rev.1.5; Copyright Power Integrations 2017	INPUT	INFO	OUTPUT	UNIT	InnoSwitch-EP Continuous/Discontinuous Flyback Transformer Design Spreadsheet
ENTER APPLICATION VARIABLES					Customer
VACMIN	100		100	V	Minimum AC Input Voltage
VACMAX	484		484	V	Maximum AC Input Voltage
fL			50	Hz	AC Mains Frequency
vo	12.00		12.00	V	Output Voltage (continuous power at the end of the cable)
10	1.00		1.00	A	Power Supply Output Current (corresponding to peak power)
Power			12.00	w	Continuous Output Power, including cable drop compensation
n			0.80		Efficiency Estimate at output terminals. Use 0.8 if no better data available
z			0.50		Z Factor. Ratio of secondary side losses to the total losses in the power supply. Use 0.5 if no better data available
tC			2.658	mSeconds	Bridge Rectifier Conduction Time Estimate
CIN			24.00	uFarad	Input capacitance
ENTER InnoSwitch-EP VARIABLES					
InnoSwitch-EP	INN2904		INN2904		User defined InnoSwitch
Chose Configuration	RED		Reduced Current Limit		Enter "RED" for reduced current limit (sealed adapters), "STD" for standard current limit or "INC" for increased current limit (peak or higher power applications)
ILIMITMIN			0.799	A	Minimum Current Limit
ILIMITTYP			0.850	A	Typical Current Limit
ILIMITMAX			0.901	A	Maximum Current Limit
fSmin			93000	Hz	Minimum Device Switching Frequency
^^2fmin			60.69	$A^{\wedge} 2 \mathrm{kHz}$	Worst case I2F parameter across the temperature range
VOR			76	V	Reflected Output Voltage (VOR <= 100 V Recommended)
VDS			5.00	V	InnoSwitch on-state Drain to Source Voltage
KP			1.473		Ripple to Peak Current Ratio at Vmin, assuming ILIMITMIN, and I2FMIN (KP < 6)
KP_TRANSIENT			0.524		Worst case transient Ripple to Peak Current Ratio. Ensure KP_TRANSIENT > 0.25
ENTER InnoSwitch-EP PROTECTION VARIABLES					
Line Undervoltage					
BROWN IN			79.5	VRMS	Minimum RMS AC Voltage at which the power supply will BROWN-IN (turn-on). The actual value of this voltage may differ slightly from the desired value due to the V-pin resistor's tolerance
brown out			66.9	VRMS	Typical RMS AC Voltage at which the power supply will BROWN-OUT (turn-off) under conditions of line-undervoltage
RLS			8.78	MOhms	Theoretical V-pin resistor for the desired UV/OV setup
RLS1/RLS2			4.42	MOhms	Standard value of a single 1% resistor, assuming 2 series resistors are used

PO1			12.00	w	Output Power
VD1			0.10	v	Output Synchronous Rectification FET Forward Voltage Drop
NS1			16.00	Turns	Output Winding Number of Turns
ISRMS1			1.92	A	Output Winding RMS Current
IRIPPLE1			1.64	A	Output Capacitor RMS Ripple Current
PIVS1			122	V	Output Rectifier Maximum Peak Inverse Voltage, assuming the primary has a Voltage spike 40% above VMAX and VO*1.05
CMS1			385	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS1			24	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS1			0.51	mm	Minimum Bare Conductor Diameter
ODS1			0.57	mm	Maximum Outside Diameter for Triple Insulated Wire
Recommended MOSFET	Auto		AON7254		Recommended SR FET for this output
RDSON_HOT			66.00	mOhm	RDSon at 100C
VRATED		Info	150	v	The peak parasitic ring voltage during the SRFET turn-off transition could be very close to the PIV of the SRFET. Verify performance on the bench
2nd output					
VO2	5.00		5.00	v	Output Voltage
102	1.00		1.00	A	Output DC Current
PO2			5.00	w	Output Power
VD2			0.70	v	Output Diode Forward Voltage Drop
NS2			8		Output Winding Number of Turns
ISRMS2			1.92	A	Output Winding RMS Current
IRIPPLE2			1.64	A	Output Capacitor RMS Ripple Current
PIVS2			82	v	Output Rectifier Maximum Peak Inverse Voltage
CMS2			385	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS2			24	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS2			0.51	mm	Minimum Bare Conductor Diameter
ODS2			1.14	mm	Maximum Outside Diameter for Triple Insulated Wire
3rd output					
VO3	12.00		12.00	v	Output Voltage
103	1.00		1.00	A	Output DC Current
PO3			12.00	w	Output Power
VD3			0.70	v	Output Diode Forward Voltage Drop
NS3			16		Output Winding Number of Turns
ISRMS3			1.92	A	Output Winding RMS Current
IRIPPLE3			1.64	A	Output Capacitor RMS Ripple Current
PIVS3			166	V	Output Rectifier Maximum Peak Inverse Voltage

CMS3			385	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS3			24	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS3			0.51	mm	Minimum Bare Conductor Diameter
ODS3			0.57	mm	Maximum Outside Diameter for Triple Insulated Wire
Total power					
					Total Power for Multi-output section
Negative Output			N/A negative output exists enter Output number;		
e.g. If VO2 is negative output, select 2					

Mechanical Diagram

Winding Instruction
Primary Winding

Start on pin(s) 2 and wind 100 turns ($x 1$ filar) of item [5]. in 3 layer(s) from left to right. Winding direction is clockwise. At the end of 1st layer, continue to wind the next layer from right to left. At the end of 2nd layer, continue to wind the next layer from left to right. On the final layer, spread the winding evenly across entire bobbin. Finish this winding on pin(s) 1.

Add 1 layer of tape, item [3], for insulation.

Bias Winding

Start on pin(s) 4 and wind 14 turns ($\times 2$ filar) of item [5]. Winding direction is clockwise. Spread the winding evenly across entire bobbin. Finish this winding on pin(s) 3 .

Add 3 layers of tape, item [3], for insulation.

Secondary Winding

Start on pin(s) 6,7 and wind 8 turns ($\times 4$ filar) of item [6]. Spread the winding evenly across entire bobbin. Winding direction is clockwise. Finish this winding on pin(s) 8.

Add 1 layer of tape, item [3], for insulation.
Start on pin(s) 9,10 and wind 8 turns ($\times 3$ filar) of item [7]. Spread the winding evenly across entire bobbin. Winding direction is clockwise. Finish this winding on pin(s) 6,7.

Add 1 layer of tape, item [3], for insulation.
Start on pin(s) 5 and wind 1 turns ($\times 2$ filar) of item [8]. Spread the winding evenly across entire bobbin. Winding direction is clockwise. Finish this winding on pin(s) 9,10.

Add 2 layers of tape, item [3], for insulation.
Core Assembly
Assemble and secure core halves. Item [1].
Varnish
Dip varnish uniformly in item [4]. Do not vacuum impregnate.

Comments

1. Pins 6 and 7 are electrically shorted to each other on the PCB via a copper trace.
2. Pins 9 and 10 are electrically shorted to each other on the PCB via a copper trace.
3. For non margin wound transformers use triple insulated wire for all secondary windings.

Materials

Item	Description
$[1]$	Core: EE19, 3F3, gapped for ALG of $52 \mathrm{nH} / \mathrm{T}^{2}$
$[2]$	Bobbin: Generic, 4 pri. +6 sec.
$[3]$	Barrier Tape: Polyester film [1 mil $(25$ um) base thickness], 9.10 mm wide
$[4]$	Varnish
$[5]$	Magnet Wire: 31 AWG, Solderable Double Coated
$[6]$	Triple Insulated Wire: 25 AWG
$[7]$	Triple Insulated Wire: 26 AWG
$[8]$	Triple Insulated Wire: 27 AWG

Electrical Test Specifications

Parameter	Condition	Spec
Electrical Strength, VAC	60 Hz 1 second, from pins 1,2,3,4 to pins 5,6,7,8,9,10.	3000
Nominal Primary Inductance, $\mu \mathrm{H}$	Measured at 1 V pk-pk, typical switching frequency, between pin 1 to pin 2, with all other Windings open.	523
Tolerance, $\pm \%$	Tolerance of Primary Inductance	15.0
Maximum Primary Leakage, $\mu \mathrm{H}$	Measured between Pin 1 to Pin 2, with all other Windings shorted.	15.70

Although the design of the software considered safety guidelines, it is the user's responsibility to ensure that the user's power supply design meets all applicable safety requirements of user's product.

Transformer Construction Parameters

Var	Value	Units	Description
Core Type	EE19		Core Type
Core Material	3F3		Core Material
Bobbin Reference	Generic, 4 pri. + 6 sec.		Bobbin Reference
Bobbin Orientation	Horizontal		Bobbin type
Primary Pins	4		Number of Primary pins used
Secondary Pins	6	μH	Number of Secondary pins used
LP	523	$m m$	Nominal Primary Inductance
ML	0.00	$m m$	Safety Margin on Left Width
MR	0.00	Safety Margin on Right Width	
LG	0.529	Estimated Gap Length	
TRF_LOSS	-1.8243	Total Transformer Losses	
FF	136	Actual Transformer Fit Factor. 100\% signifies fully utilized winding window	

Bias Variables

Var	Value	Units	Description
NB	14		Bias Winding Number of Turns
Wire Size	31	AWG	Wire size of Bias windings
Winding Type	Bifilar (x2)		Wire type of Bias windings
Layers	0.82		Bias Winding Layers
Start Pin(s)	4		Starting pin(s) for Bias winding
Termination Pin(s)	3		Termination pin(s) for Bias winding

Primary Winding Section 1

Var	Value	Units	Description
NP1	100		Number of Primary Winding Turns in the First Section of Primary
Wire Size	31	AWG	Primary Winding - Wire Size
Winding Type	Single (x1)		Primary Winding - Number of Parallel Wire Strands
L	2.93		Primary Winding - Number of Layers
Start Pin(s)	$\mathbf{2}$		Starting pin(s) for first section of primary winding
Termination Pin(s)	$\mathbf{1}$		Termination pin(s) for first section of primary winding

Output 1

Var	Value	Units	Description
VO	12.00	V	Typical Output Voltage
IO	1.00	A	Output Current
VOUT_ACTUAL	12.00	V	Actual Output Voltage
NS	8		Secondary Number of Turns
Wire Size	26	AWG	Wire size of secondary winding
Winding Type	Trifilar (x3)		Output winding number of parallel strands
L_S_OUT	1.58		Secondary Output Winding Layers
Start Pin(s)	9,10		Starting pin(s) for Output winding
Termination Pin(s)	6,7		Termination pin(s) for Output winding

Output 2

Var
Value
Units
Description

VO	5.00	V	Typical Output Voltage
IO	1.00	A	Output Current
VOUT_ACTUAL	5.35	V	Actual Output Voltage
NS	8		Secondary Number of Turns
Wire Size	25	AWG	Wire size of secondary winding
Winding Type	Quadfilar (x4)		Output winding number of parallel strands
L_S_OUT	2.29		Secondary Output Winding Layers
Start Pin(s)	6,7		Starting pin(s) for Output winding
Termination Pin(s)	8		Termination pin(s) for Output winding

Output 3

Var	Value	Units	Description
VO	12.00	V	Typical Output Voltage
IO	1.00	A	Output Current
VOUT_ACTUAL	12.16	V	Actual Output Voltage
NS	1		Secondary Number of Turns
Wire Size	27	AWG	Wire size of secondary winding
Winding Type	Bifilar (x2)		Output winding number of parallel strands
L_S_OUT	0.12		Secondary Output Winding Layers
Start Pin(s)	$\mathbf{5}$	Starting pin(s) for Output winding	
Termination Pin(s)	9,10		Termination pin(s) for Output winding

